Skip to main content
release_alert
Welcome to the new Scholars 3.0! Read about new features and let us know what you think.
cancel

Metabolism of methadone and levo-alpha-acetylmethadol (LAAM) by human intestinal cytochrome P450 3A4 (CYP3A4): potential contribution of intestinal metabolism to presystemic clearance and bioactivation.

Publication ,  Journal Article
Oda, Y; Kharasch, ED
Published in: J Pharmacol Exp Ther
September 2001

Methadone and levo-alpha-acetylmethadol (LAAM) are opioid agonists used for analgesia and preventing opiate withdrawal. Methadone is sequentially N-demethylated to the inactive metabolites 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP) and 2-ethyl-5-methyl-3,3-diphenylpyraline (EMDP). LAAM is essentially a prodrug that undergoes bioactivation via sequential N-demethylation to levo-alpha-acetyl-N-normethadol (nor-LAAM) and levo-alpha-acetyl-N,N-dinormethadol (dinor-LAAM). Methadone and LAAM are metabolized by CYP3A4 in human liver. Since they are administered orally, and CYP3A4 is expressed in human intestine, we tested the hypotheses that human intestine can metabolize methadone and LAAM, and evaluated the participation of CYP3A4. Intestinal microsomal methadone N-demethylation exhibited hyperbolic noncooperative kinetics and biphasic Eadie-Hofstee plots. Using a dual-enzyme Michaelis-Menten model, K(m) values were 11 and 1200 microM for EDDP and 23 and 930 microM for EMDP formation, respectively. CYP3A4 inhibitors (troleandomycin and ketoconazole) inhibited EDDP and EMDP formation by >70%. Methadone N-demethylation by CYP3A4 showed biphasic Eadie-Hofstee plots without evidence of positive cooperativity; K(m) values were 10 and 1100 microM for EDDP and 20 and 1000 microM for EMDP formation. Intestinal microsomal LAAM and nor-LAAM N-demethylation also exhibited hyperbolic kinetics and biphasic Eadie-Hofstee plots. K(m) values were 21 and 980 microM for nor-LAAM from LAAM and 18 and 1200 microM for dinor-LAAM from nor-LAAM. Troleandomycin and ketoconazole inhibited N-demethylation by >70%. LAAM and nor-LAAM metabolism by CYP3A4 showed biphasic Eadie-Hofstee plots without evidence of positive cooperativity; K(m) values were 8 and 1300 microM, 6 and 950 microM, respectively. Predicted in vivo intestinal extraction of methadone and LAAM is 21 and 33%, respectively. We conclude that methadone, LAAM, and nor-LAAM are metabolized by human intestinal microsomes; CYP3A4 is the predominant cytochrome P450 isoform; CYP3A4-catalyzed methadone, LAAM, and nor-LAAM metabolism is characterized by noncooperative, multisite kinetics; and intestinal metabolism may contribute to presystemic methadone inactivation and LAAM bioactivation.

Duke Scholars

Published In

J Pharmacol Exp Ther

ISSN

0022-3565

Publication Date

September 2001

Volume

298

Issue

3

Start / End Page

1021 / 1032

Location

United States

Related Subject Headings

  • Pharmacology & Pharmacy
  • Narcotics
  • Mixed Function Oxygenases
  • Microsomes
  • Methadyl Acetate
  • Methadone
  • Kinetics
  • Isoenzymes
  • Intestines
  • Intestinal Mucosa
 

Published In

J Pharmacol Exp Ther

ISSN

0022-3565

Publication Date

September 2001

Volume

298

Issue

3

Start / End Page

1021 / 1032

Location

United States

Related Subject Headings

  • Pharmacology & Pharmacy
  • Narcotics
  • Mixed Function Oxygenases
  • Microsomes
  • Methadyl Acetate
  • Methadone
  • Kinetics
  • Isoenzymes
  • Intestines
  • Intestinal Mucosa