Skip to main content
Journal cover image

Construction, visualization, and analysis of biological network models in Dynetica

Publication ,  Journal Article
Eidum, D; Asthana, K; Unni, S; Deng, M; You, L
Published in: Quantitative Biology
December 1, 2014

Mathematical modeling has become an increasingly important aspect of biological research. Computer simulations help to improve our understanding of complex systems by testing the validity of proposed mechanisms and generating experimentally testable hypotheses. However, significant overhead is generated by the creation, debugging, and perturbation of these computational models and their parameters, especially for researchers who are unfamiliar with programming or numerical methods. Dynetica 2.0 is a user-friendly dynamic network simulator designed to expedite this process. Models are created and visualized in an easy-to-use graphical interface, which displays all of the species and reactions involved in a graph layout. System inputs and outputs, indicators, and intermediate expressions may be incorporated into the model via the versatile “expression variable” entity. Models can also be modular, allowing for the quick construction of complex systems from simpler components. Dynetica 2.0 supports a number of deterministic and stochastic algorithms for performing time-course simulations. Additionally, Dynetica 2.0 provides built-in tools for performing sensitivity or dose response analysis for a number of different metrics. Its parameter searching tools can optimize specific objectives of the time course or dose response of the system. Systems can be translated from Dynetica 2.0 into MATLAB code or the Systems Biology Markup Language (SBML) format for further analysis or publication. Finally, since it is written in Java, Dynetica 2.0 is platform independent, allowing for easy sharing and collaboration between researchers.

Duke Scholars

Published In

Quantitative Biology

DOI

EISSN

2095-4697

ISSN

2095-4689

Publication Date

December 1, 2014

Volume

2

Issue

4

Start / End Page

142 / 150

Related Subject Headings

  • 3102 Bioinformatics and computational biology
  • 0601 Biochemistry and Cell Biology
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Eidum, D., Asthana, K., Unni, S., Deng, M., & You, L. (2014). Construction, visualization, and analysis of biological network models in Dynetica. Quantitative Biology, 2(4), 142–150. https://doi.org/10.1007/s40484-014-0036-4
Eidum, D., K. Asthana, S. Unni, M. Deng, and L. You. “Construction, visualization, and analysis of biological network models in Dynetica.” Quantitative Biology 2, no. 4 (December 1, 2014): 142–50. https://doi.org/10.1007/s40484-014-0036-4.
Eidum D, Asthana K, Unni S, Deng M, You L. Construction, visualization, and analysis of biological network models in Dynetica. Quantitative Biology. 2014 Dec 1;2(4):142–50.
Eidum, D., et al. “Construction, visualization, and analysis of biological network models in Dynetica.” Quantitative Biology, vol. 2, no. 4, Dec. 2014, pp. 142–50. Scopus, doi:10.1007/s40484-014-0036-4.
Eidum D, Asthana K, Unni S, Deng M, You L. Construction, visualization, and analysis of biological network models in Dynetica. Quantitative Biology. 2014 Dec 1;2(4):142–150.
Journal cover image

Published In

Quantitative Biology

DOI

EISSN

2095-4697

ISSN

2095-4689

Publication Date

December 1, 2014

Volume

2

Issue

4

Start / End Page

142 / 150

Related Subject Headings

  • 3102 Bioinformatics and computational biology
  • 0601 Biochemistry and Cell Biology