Skip to main content
Journal cover image

Mitochondrial ROS cause motor deficits induced by synaptic inactivity: Implications for synapse pruning.

Publication ,  Journal Article
Sidlauskaite, E; Gibson, JW; Megson, IL; Whitfield, PD; Tovmasyan, A; Batinic-Haberle, I; Murphy, MP; Moult, PR; Cobley, JN
Published in: Redox Biol
June 2018

Developmental synapse pruning refines burgeoning connectomes. The basic mechanisms of mitochondrial reactive oxygen species (ROS) production suggest they select inactive synapses for pruning: whether they do so is unknown. To begin to unravel whether mitochondrial ROS regulate pruning, we made the local consequences of neuromuscular junction (NMJ) pruning detectable as motor deficits by using disparate exogenous and endogenous models to induce synaptic inactivity en masse in developing Xenopus laevis tadpoles. We resolved whether: (1) synaptic inactivity increases mitochondrial ROS; and (2) chemically heterogeneous antioxidants rescue synaptic inactivity induced motor deficits. Regardless of whether it was achieved with muscle (α-bungarotoxin), nerve (α-latrotoxin) targeted neurotoxins or an endogenous pruning cue (SPARC), synaptic inactivity increased mitochondrial ROS in vivo. The manganese porphyrins MnTE-2-PyP5+ and/or MnTnBuOE-2-PyP5+ blocked mitochondrial ROS to significantly reduce neurotoxin and endogenous pruning cue induced motor deficits. Selectively inducing mitochondrial ROS-using mitochondria-targeted Paraquat (MitoPQ)-recapitulated synaptic inactivity induced motor deficits; which were significantly reduced by blocking mitochondrial ROS with MnTnBuOE-2-PyP5+. We unveil mitochondrial ROS as synaptic activity sentinels that regulate the phenotypical consequences of forced synaptic inactivity at the NMJ. Our novel results are relevant to pruning because synaptic inactivity is one of its defining features.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Redox Biol

DOI

EISSN

2213-2317

Publication Date

June 2018

Volume

16

Start / End Page

344 / 351

Location

Netherlands

Related Subject Headings

  • Xenopus laevis
  • Synapses
  • Spider Venoms
  • Reactive Oxygen Species
  • Paraquat
  • Neuromuscular Junction
  • Motor Activity
  • Mitochondria
  • Larva
  • Bungarotoxins
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Sidlauskaite, E., Gibson, J. W., Megson, I. L., Whitfield, P. D., Tovmasyan, A., Batinic-Haberle, I., … Cobley, J. N. (2018). Mitochondrial ROS cause motor deficits induced by synaptic inactivity: Implications for synapse pruning. Redox Biol, 16, 344–351. https://doi.org/10.1016/j.redox.2018.03.012
Sidlauskaite, Eva, Jack W. Gibson, Ian L. Megson, Philip D. Whitfield, Artak Tovmasyan, Ines Batinic-Haberle, Michael P. Murphy, Peter R. Moult, and James N. Cobley. “Mitochondrial ROS cause motor deficits induced by synaptic inactivity: Implications for synapse pruning.Redox Biol 16 (June 2018): 344–51. https://doi.org/10.1016/j.redox.2018.03.012.
Sidlauskaite E, Gibson JW, Megson IL, Whitfield PD, Tovmasyan A, Batinic-Haberle I, et al. Mitochondrial ROS cause motor deficits induced by synaptic inactivity: Implications for synapse pruning. Redox Biol. 2018 Jun;16:344–51.
Sidlauskaite, Eva, et al. “Mitochondrial ROS cause motor deficits induced by synaptic inactivity: Implications for synapse pruning.Redox Biol, vol. 16, June 2018, pp. 344–51. Pubmed, doi:10.1016/j.redox.2018.03.012.
Sidlauskaite E, Gibson JW, Megson IL, Whitfield PD, Tovmasyan A, Batinic-Haberle I, Murphy MP, Moult PR, Cobley JN. Mitochondrial ROS cause motor deficits induced by synaptic inactivity: Implications for synapse pruning. Redox Biol. 2018 Jun;16:344–351.
Journal cover image

Published In

Redox Biol

DOI

EISSN

2213-2317

Publication Date

June 2018

Volume

16

Start / End Page

344 / 351

Location

Netherlands

Related Subject Headings

  • Xenopus laevis
  • Synapses
  • Spider Venoms
  • Reactive Oxygen Species
  • Paraquat
  • Neuromuscular Junction
  • Motor Activity
  • Mitochondria
  • Larva
  • Bungarotoxins