Predicting gene structure changes resulting from genetic variants via exon definition features.
MOTIVATION: Genetic variation that disrupts gene function by altering gene splicing between individuals can substantially influence traits and disease. In those cases, accurately predicting the effects of genetic variation on splicing can be highly valuable for investigating the mechanisms underlying those traits and diseases. While methods have been developed to generate high quality computational predictions of gene structures in reference genomes, the same methods perform poorly when used to predict the potentially deleterious effects of genetic changes that alter gene splicing between individuals. Underlying that discrepancy in predictive ability are the common assumptions by reference gene finding algorithms that genes are conserved, well-formed and produce functional proteins. RESULTS: We describe a probabilistic approach for predicting recent changes to gene structure that may or may not conserve function. The model is applicable to both coding and non-coding genes, and can be trained on existing gene annotations without requiring curated examples of aberrant splicing. We apply this model to the problem of predicting altered splicing patterns in the genomes of individual humans, and we demonstrate that performing gene-structure prediction without relying on conserved coding features is feasible. The model predicts an unexpected abundance of variants that create de novo splice sites, an observation supported by both simulations and empirical data from RNA-seq experiments. While these de novo splice variants are commonly misinterpreted by other tools as coding or non-coding variants of little or no effect, we find that in some cases they can have large effects on splicing activity and protein products and we propose that they may commonly act as cryptic factors in disease. AVAILABILITY AND IMPLEMENTATION: The software is available from geneprediction.org/SGRF. SUPPLEMENTARY INFORMATION: Supplementary information is available at Bioinformatics online.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- Software
- Sequence Analysis, RNA
- RNA Splicing
- Molecular Sequence Annotation
- Humans
- Exons
- Bioinformatics
- 49 Mathematical sciences
- 46 Information and computing sciences
- 31 Biological sciences
Citation
Published In
DOI
EISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- Software
- Sequence Analysis, RNA
- RNA Splicing
- Molecular Sequence Annotation
- Humans
- Exons
- Bioinformatics
- 49 Mathematical sciences
- 46 Information and computing sciences
- 31 Biological sciences