Processing overlap-dependent distractor dilution rather than perceptual target load determines attentional selectivity.
The perceptual load theory of attentional selection argues that the degree to which distractors interfere with target processing is determined by the "perceptual load" (or discrimination difficulty) of target processing: when perceptual load is low, distractors interfere to a greater extent than when it is high. A well-known exception is load-independent interference effects from face distractors during processing of name targets. This finding was reconciled with load theory by proposing distinct processing resources for faces versus names. In the present study, we revisit this effect to test (a) whether increasing the processing overlap (perceptual, lexical, conceptual) between potential targets and distractors would reinstate the classic load effect, and (b) whether this data pattern could be better explained by load theory or by a rival account that argues that distractor dilution rather than target load determines the degree of distractor interference. Over four experiments, we first replicate the original finding and then show that load effects grow with increasing processing overlap between potential targets and distractors. However, by adding dilution conditions, we also show that these processing overlap dependent modulations of distractor interference can be explained by the distractor dilution perspective but not by perceptual load theory. Thus, our findings support a processing overlap dilution account of attentional selection.
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Young Adult
- Reading
- Psychomotor Performance
- Pattern Recognition, Visual
- Male
- Humans
- Female
- Facial Recognition
- Experimental Psychology
- Attention
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Young Adult
- Reading
- Psychomotor Performance
- Pattern Recognition, Visual
- Male
- Humans
- Female
- Facial Recognition
- Experimental Psychology
- Attention