
Deep learning based detection of cone photoreceptors with multimodal adaptive optics scanning light ophthalmoscope images of achromatopsia.
Fast and reliable quantification of cone photoreceptors is a bottleneck in the clinical utilization of adaptive optics scanning light ophthalmoscope (AOSLO) systems for the study, diagnosis, and prognosis of retinal diseases. To-date, manual grading has been the sole reliable source of AOSLO quantification, as no automatic method has been reliably utilized for cone detection in real-world low-quality images of diseased retina. We present a novel deep learning based approach that combines information from both the confocal and non-confocal split detector AOSLO modalities to detect cones in subjects with achromatopsia. Our dual-mode deep learning based approach outperforms the state-of-the-art automated techniques and is on a par with human grading.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- 5102 Atomic, molecular and optical physics
- 4003 Biomedical engineering
- 3212 Ophthalmology and optometry
- 0912 Materials Engineering
- 0205 Optical Physics
Citation

Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- 5102 Atomic, molecular and optical physics
- 4003 Biomedical engineering
- 3212 Ophthalmology and optometry
- 0912 Materials Engineering
- 0205 Optical Physics