Intrinsic Xenobiotic Resistance of the Intestinal Stem Cell Niche.
The gut absorbs dietary nutrients and provides a barrier to xenobiotics and microbiome metabolites. To cope with toxin exposures, the intestinal epithelium is one of the most rapidly proliferating tissues in the body. The stem cell niche supplies essential signaling factors including Wnt proteins secreted by subepithelial myofibroblasts. Unexpectedly, therapeutically effective doses of orally administered PORCN inhibitors that block all Wnt secretion do not affect intestinal homeostasis. We find that intestinal myofibroblasts are intrinsically resistant to multiple xenobiotics, including PORCN inhibitors and the anthracycline antibiotic doxorubicin. These myofibroblasts have high expression of a subset of drug transporters; knockout of Mrp1/Abcc1 enhances drug sensitivity. Tamoxifen administration to Rosa26CreERT2;mT/mG mice visually highlights the drug-resistant intestinal stromal compartment and identifies small populations of drug-resistant cells in lung, kidney, and pancreatic islets. Xenobiotic resistance of the Wnt-producing myofibroblasts can protect the intestinal stem cell niche in the face of an unpredictable environment.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- Wnt Proteins
- Tamoxifen
- Stem Cell Niche
- Signal Transduction
- Quinolines
- Propionates
- Myofibroblasts
- Multidrug Resistance-Associated Proteins
- Mice, Knockout
- Mice, Inbred C57BL
Citation
Published In
DOI
EISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- Wnt Proteins
- Tamoxifen
- Stem Cell Niche
- Signal Transduction
- Quinolines
- Propionates
- Myofibroblasts
- Multidrug Resistance-Associated Proteins
- Mice, Knockout
- Mice, Inbred C57BL