
LncRNA CamK-A Regulates Ca2+-Signaling-Mediated Tumor Microenvironment Remodeling.
Cancer cells entail metabolic adaptation and microenvironmental remodeling to survive and progress. Both calcium (Ca2+) flux and Ca2+-dependent signaling play a crucial role in this process, although the underlying mechanism has yet to be elucidated. Through RNA screening, we identified one long noncoding RNA (lncRNA) named CamK-A (lncRNA for calcium-dependent kinase activation) in tumorigenesis. CamK-A is highly expressed in multiple human cancers and involved in cancer microenvironment remodeling via activation of Ca2+-triggered signaling. Mechanistically, CamK-A activates Ca2+/calmodulin-dependent kinase PNCK, which in turn phosphorylates IκBα and triggers calcium-dependent nuclear factor κB (NF-κB) activation. This regulation results in the tumor microenvironment remodeling, including macrophage recruitment, angiogenesis, and tumor progression. Notably, our human-patient-derived xenograft (PDX) model studies demonstrate that targeting CamK-A robustly impaired cancer development. Clinically, CamK-A expression coordinates with the activation of CaMK-NF-κB axis, and its high expression indicates poor patient survival rate, suggesting its role as a potential biomarker and therapeutic target.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- Xenograft Model Antitumor Assays
- Tumor Microenvironment
- Signal Transduction
- RNA, Long Noncoding
- Phosphorylation
- Neoplasms
- NF-kappa B
- Macrophages
- Humans
- Gene Expression Regulation, Neoplastic
Citation

Published In
DOI
EISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- Xenograft Model Antitumor Assays
- Tumor Microenvironment
- Signal Transduction
- RNA, Long Noncoding
- Phosphorylation
- Neoplasms
- NF-kappa B
- Macrophages
- Humans
- Gene Expression Regulation, Neoplastic