A phase I trial of low-dose inhaled carbon monoxide in sepsis-induced ARDS.
BACKGROUND: Acute respiratory distress syndrome (ARDS) is a prevalent disease with significant mortality for which no effective pharmacologic therapy exists. Low-dose inhaled carbon monoxide (iCO) confers cytoprotection in preclinical models of sepsis and ARDS. METHODS: We conducted a phase I dose escalation trial to assess feasibility and safety of low-dose iCO administration in patients with sepsis-induced ARDS. Twelve participants were randomized to iCO or placebo air 2:1 in two cohorts. Four subjects each were administered iCO (100 ppm in cohort 1 or 200 ppm in cohort 2) or placebo for 90 minutes for up to 5 consecutive days. Primary outcomes included the incidence of carboxyhemoglobin (COHb) level ≥10%, prespecified administration-associated adverse events (AEs), and severe adverse events (SAEs). Secondary endpoints included the accuracy of the Coburn-Forster-Kane (CFK) equation to predict COHb levels, biomarker levels, and clinical outcomes. RESULTS: No participants exceeded a COHb level of 10%, and there were no administration-associated AEs or study-related SAEs. CO-treated participants had a significant increase in COHb (3.48% ± 0.7% [cohort 1]; 4.9% ± 0.28% [cohort 2]) compared with placebo-treated subjects (1.97% ± 0.39%). The CFK equation was highly accurate at predicting COHb levels, particularly in cohort 2 (R2 = 0.9205; P < 0.0001). Circulating mitochondrial DNA levels were reduced in iCO-treated participants compared with placebo-treated subjects. CONCLUSION: Precise administration of low-dose iCO is feasible, well-tolerated, and appears to be safe in patients with sepsis-induced ARDS. Excellent agreement between predicted and observed COHb should ensure that COHb levels remain in the target range during future efficacy trials. TRIAL REGISTRATION: ClinicalTrials.gov NCT02425579. FUNDING: NIH grants P01HL108801, KL2TR002385, K08HL130557, and K08GM102695.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
Publication Date
Volume
Issue
Location
Related Subject Headings
- Sepsis
- Respiratory Therapy
- Respiratory Distress Syndrome
- Middle Aged
- Male
- Humans
- Female
- DNA, Mitochondrial
- Carboxyhemoglobin
- Carbon Monoxide
Citation
Published In
DOI
EISSN
Publication Date
Volume
Issue
Location
Related Subject Headings
- Sepsis
- Respiratory Therapy
- Respiratory Distress Syndrome
- Middle Aged
- Male
- Humans
- Female
- DNA, Mitochondrial
- Carboxyhemoglobin
- Carbon Monoxide