Skip to main content
Journal cover image

Enzymatic production of mono-ubiquitinated proteins for structural studies: The example of the Josephin domain of ataxin-3.

Publication ,  Journal Article
Faggiano, S; Menon, RP; Kelly, GP; McCormick, J; Todi, SV; Scaglione, KM; Paulson, HL; Pastore, A
Published in: FEBS Open Bio
2013

Protein ubiquitination occurs through formation of an isopeptide bond between the C-terminal glycine of ubiquitin (Ub) and the ɛ-amino group of a substrate lysine residue. This post-translational modification, which occurs through the attachment of single and/or multiple copies of mono-ubiquitin and poly-ubiquitin chains, is involved in crucial cellular events such as protein degradation, cell-cycle regulation and DNA repair. The abnormal functioning of ubiquitin pathways is also implicated in the pathogenesis of several human diseases ranging from cancer to neurodegeneration. However, despite the undoubted biological importance, understanding the molecular basis of how ubiquitination regulates different pathways has up to now been strongly limited by the difficulty of producing the amounts of highly homogeneous samples that are needed for a structural characterization by X-ray crystallography and/or NMR. Here, we report on the production of milligrams of highly pure Josephin mono-ubiquitinated on lysine 117 through large scale in vitro enzymatic ubiquitination. Josephin is the catalytic domain of ataxin-3, a protein responsible for spinocerebellar ataxia type 3. Ataxin-3 is the first deubiquitinating enzyme (DUB) reported to be activated by mono-ubiquitination. We demonstrate that the samples produced with the described method are correctly folded and suitable for structural studies. The protocol allows facile selective labelling of the components. Our results provide an important proof-of-concept that may pave the way to new approaches to the in vitro study of ubiquitinated proteins.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

FEBS Open Bio

DOI

ISSN

2211-5463

Publication Date

2013

Volume

3

Start / End Page

453 / 458

Location

England

Related Subject Headings

  • 3404 Medicinal and biomolecular chemistry
  • 3101 Biochemistry and cell biology
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Faggiano, S., Menon, R. P., Kelly, G. P., McCormick, J., Todi, S. V., Scaglione, K. M., … Pastore, A. (2013). Enzymatic production of mono-ubiquitinated proteins for structural studies: The example of the Josephin domain of ataxin-3. FEBS Open Bio, 3, 453–458. https://doi.org/10.1016/j.fob.2013.10.005
Faggiano, Serena, Rajesh P. Menon, Geoff P. Kelly, John McCormick, Sokol V. Todi, K Matthew Scaglione, Henry L. Paulson, and Annalisa Pastore. “Enzymatic production of mono-ubiquitinated proteins for structural studies: The example of the Josephin domain of ataxin-3.FEBS Open Bio 3 (2013): 453–58. https://doi.org/10.1016/j.fob.2013.10.005.
Faggiano S, Menon RP, Kelly GP, McCormick J, Todi SV, Scaglione KM, et al. Enzymatic production of mono-ubiquitinated proteins for structural studies: The example of the Josephin domain of ataxin-3. FEBS Open Bio. 2013;3:453–8.
Faggiano, Serena, et al. “Enzymatic production of mono-ubiquitinated proteins for structural studies: The example of the Josephin domain of ataxin-3.FEBS Open Bio, vol. 3, 2013, pp. 453–58. Pubmed, doi:10.1016/j.fob.2013.10.005.
Faggiano S, Menon RP, Kelly GP, McCormick J, Todi SV, Scaglione KM, Paulson HL, Pastore A. Enzymatic production of mono-ubiquitinated proteins for structural studies: The example of the Josephin domain of ataxin-3. FEBS Open Bio. 2013;3:453–458.
Journal cover image

Published In

FEBS Open Bio

DOI

ISSN

2211-5463

Publication Date

2013

Volume

3

Start / End Page

453 / 458

Location

England

Related Subject Headings

  • 3404 Medicinal and biomolecular chemistry
  • 3101 Biochemistry and cell biology