Skip to main content

Ground-state energy estimation of the water molecule on a trapped-ion quantum computer

Publication ,  Journal Article
Nam, Y; Chen, JS; Pisenti, NC; Wright, K; Delaney, C; Maslov, D; Brown, KR; Allen, S; Amini, JM; Apisdorf, J; Beck, KM; Blinov, A; Chaplin, V ...
Published in: npj Quantum Information
December 1, 2020

Quantum computing leverages the quantum resources of superposition and entanglement to efficiently solve computational problems considered intractable for classical computers. Examples include calculating molecular and nuclear structure, simulating strongly interacting electron systems, and modeling aspects of material function. While substantial theoretical advances have been made in mapping these problems to quantum algorithms, there remains a large gap between the resource requirements for solving such problems and the capabilities of currently available quantum hardware. Bridging this gap will require a co-design approach, where the expression of algorithms is developed in conjunction with the hardware itself to optimize execution. Here we describe an extensible co-design framework for solving chemistry problems on a trapped-ion quantum computer and apply it to estimating the ground-state energy of the water molecule using the variational quantum eigensolver (VQE) method. The controllability of the trapped-ion quantum computer enables robust energy estimates using the prepared VQE ansatz states. The systematic and statistical errors are comparable to the chemical accuracy, which is the target threshold necessary for predicting the rates of chemical reaction dynamics, without resorting to any error mitigation techniques based on Richardson extrapolation.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

npj Quantum Information

DOI

EISSN

2056-6387

Publication Date

December 1, 2020

Volume

6

Issue

1

Related Subject Headings

  • 5108 Quantum physics
  • 4902 Mathematical physics
  • 4613 Theory of computation
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Nam, Y., Chen, J. S., Pisenti, N. C., Wright, K., Delaney, C., Maslov, D., … Kim, J. (2020). Ground-state energy estimation of the water molecule on a trapped-ion quantum computer. Npj Quantum Information, 6(1). https://doi.org/10.1038/s41534-020-0259-3
Nam, Y., J. S. Chen, N. C. Pisenti, K. Wright, C. Delaney, D. Maslov, K. R. Brown, et al. “Ground-state energy estimation of the water molecule on a trapped-ion quantum computer.” Npj Quantum Information 6, no. 1 (December 1, 2020). https://doi.org/10.1038/s41534-020-0259-3.
Nam Y, Chen JS, Pisenti NC, Wright K, Delaney C, Maslov D, et al. Ground-state energy estimation of the water molecule on a trapped-ion quantum computer. npj Quantum Information. 2020 Dec 1;6(1).
Nam, Y., et al. “Ground-state energy estimation of the water molecule on a trapped-ion quantum computer.” Npj Quantum Information, vol. 6, no. 1, Dec. 2020. Scopus, doi:10.1038/s41534-020-0259-3.
Nam Y, Chen JS, Pisenti NC, Wright K, Delaney C, Maslov D, Brown KR, Allen S, Amini JM, Apisdorf J, Beck KM, Blinov A, Chaplin V, Chmielewski M, Collins C, Debnath S, Hudek KM, Ducore AM, Keesan M, Kreikemeier SM, Mizrahi J, Solomon P, Williams M, Wong-Campos JD, Moehring D, Monroe C, Kim J. Ground-state energy estimation of the water molecule on a trapped-ion quantum computer. npj Quantum Information. 2020 Dec 1;6(1).

Published In

npj Quantum Information

DOI

EISSN

2056-6387

Publication Date

December 1, 2020

Volume

6

Issue

1

Related Subject Headings

  • 5108 Quantum physics
  • 4902 Mathematical physics
  • 4613 Theory of computation