Fast and robust active neuron segmentation in two-photon calcium imaging using spatiotemporal deep learning.
Calcium imaging records large-scale neuronal activity with cellular resolution in vivo. Automated, fast, and reliable active neuron segmentation is a critical step in the analysis workflow of utilizing neuronal signals in real-time behavioral studies for discovery of neuronal coding properties. Here, to exploit the full spatiotemporal information in two-photon calcium imaging movies, we propose a 3D convolutional neural network to identify and segment active neurons. By utilizing a variety of two-photon microscopy datasets, we show that our method outperforms state-of-the-art techniques and is on a par with manual segmentation. Furthermore, we demonstrate that the network trained on data recorded at a specific cortical layer can be used to accurately segment active neurons from another layer with different neuron density. Finally, our work documents significant tabulation flaws in one of the most cited and active online scientific challenges in neuron segmentation. As our computationally fast method is an invaluable tool for a large spectrum of real-time optogenetic experiments, we have made our open-source software and carefully annotated dataset freely available online.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Visual Cortex
- Video Recording
- Neurons
- Microscopy, Fluorescence, Multiphoton
- Mice, Transgenic
- Mice
- Image Processing, Computer-Assisted
- Humans
- Deep Learning
- Calcium
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Visual Cortex
- Video Recording
- Neurons
- Microscopy, Fluorescence, Multiphoton
- Mice, Transgenic
- Mice
- Image Processing, Computer-Assisted
- Humans
- Deep Learning
- Calcium