Skip to main content
Journal cover image

Convergence of stochastic-extended Lagrangian molecular dynamics method for polarizable force field simulation

Publication ,  Journal Article
An, D; Cheng, SY; Head-Gordon, T; Lin, L; Lu, J
Published in: Journal of Computational Physics
August 1, 2021

Extended Lagrangian molecular dynamics (XLMD) is a general method for performing molecular dynamics simulations using quantum and classical many-body potentials. Recently several new XLMD schemes have been proposed and tested on several classes of many-body polarization models such as induced dipoles or Drude charges, by creating an auxiliary set of these same degrees of freedom that are reversibly integrated through time. This gives rise to a singularly perturbed Hamiltonian system that provides a good approximation to the time evolution of the real mutual polarization field. To further improve upon the accuracy of the XLMD dynamics in the context of classical polarizable force field simulation, and to potentially extend it to other many-body potentials, we introduce a stochastic modification which leads to a set of singularly perturbed Langevin equations with degenerate noise. We prove that the resulting Stochastic-XLMD converges to the accurate dynamics, and the convergence rate is both sharp and is independent of the accuracy of the initial polarization field. We carefully study the scaling of the damping factor and numerical noise for efficient numerical simulation for Stochastic-XLMD, and we demonstrate the effectiveness of the method for water molecules described by a polarizable force field.

Duke Scholars

Published In

Journal of Computational Physics

DOI

EISSN

1090-2716

ISSN

0021-9991

Publication Date

August 1, 2021

Volume

438

Related Subject Headings

  • Applied Mathematics
  • 51 Physical sciences
  • 49 Mathematical sciences
  • 40 Engineering
  • 09 Engineering
  • 02 Physical Sciences
  • 01 Mathematical Sciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
An, D., Cheng, S. Y., Head-Gordon, T., Lin, L., & Lu, J. (2021). Convergence of stochastic-extended Lagrangian molecular dynamics method for polarizable force field simulation. Journal of Computational Physics, 438. https://doi.org/10.1016/j.jcp.2021.110338
An, D., S. Y. Cheng, T. Head-Gordon, L. Lin, and J. Lu. “Convergence of stochastic-extended Lagrangian molecular dynamics method for polarizable force field simulation.” Journal of Computational Physics 438 (August 1, 2021). https://doi.org/10.1016/j.jcp.2021.110338.
An D, Cheng SY, Head-Gordon T, Lin L, Lu J. Convergence of stochastic-extended Lagrangian molecular dynamics method for polarizable force field simulation. Journal of Computational Physics. 2021 Aug 1;438.
An, D., et al. “Convergence of stochastic-extended Lagrangian molecular dynamics method for polarizable force field simulation.” Journal of Computational Physics, vol. 438, Aug. 2021. Scopus, doi:10.1016/j.jcp.2021.110338.
An D, Cheng SY, Head-Gordon T, Lin L, Lu J. Convergence of stochastic-extended Lagrangian molecular dynamics method for polarizable force field simulation. Journal of Computational Physics. 2021 Aug 1;438.
Journal cover image

Published In

Journal of Computational Physics

DOI

EISSN

1090-2716

ISSN

0021-9991

Publication Date

August 1, 2021

Volume

438

Related Subject Headings

  • Applied Mathematics
  • 51 Physical sciences
  • 49 Mathematical sciences
  • 40 Engineering
  • 09 Engineering
  • 02 Physical Sciences
  • 01 Mathematical Sciences