Skip to main content

A dimension-free hermite-hadamard inequality via gradient estimates for the torsion function

Publication ,  Journal Article
Lu, J; Steinerberger, S
Published in: Proceedings of the American Mathematical Society
January 1, 2020

Let Ω ⊂ Rn be a convex domain, and let f : Ω → R be a subharmonic function, Δf ≥ 0, which satisfies f ≥ 0 on the boundary ∂Ω. Then (Formula Presented) Our proof is based on a new gradient estimate for the torsion function, Δu = -1 with Dirichlet boundary conditions, which is of independent interest.

Duke Scholars

Published In

Proceedings of the American Mathematical Society

DOI

EISSN

1088-6826

ISSN

0002-9939

Publication Date

January 1, 2020

Volume

148

Issue

2

Start / End Page

673 / 679

Related Subject Headings

  • 4904 Pure mathematics
  • 0101 Pure Mathematics
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Lu, J., & Steinerberger, S. (2020). A dimension-free hermite-hadamard inequality via gradient estimates for the torsion function. Proceedings of the American Mathematical Society, 148(2), 673–679. https://doi.org/10.1090/proc/14843
Lu, J., and S. Steinerberger. “A dimension-free hermite-hadamard inequality via gradient estimates for the torsion function.” Proceedings of the American Mathematical Society 148, no. 2 (January 1, 2020): 673–79. https://doi.org/10.1090/proc/14843.
Lu J, Steinerberger S. A dimension-free hermite-hadamard inequality via gradient estimates for the torsion function. Proceedings of the American Mathematical Society. 2020 Jan 1;148(2):673–9.
Lu, J., and S. Steinerberger. “A dimension-free hermite-hadamard inequality via gradient estimates for the torsion function.” Proceedings of the American Mathematical Society, vol. 148, no. 2, Jan. 2020, pp. 673–79. Scopus, doi:10.1090/proc/14843.
Lu J, Steinerberger S. A dimension-free hermite-hadamard inequality via gradient estimates for the torsion function. Proceedings of the American Mathematical Society. 2020 Jan 1;148(2):673–679.

Published In

Proceedings of the American Mathematical Society

DOI

EISSN

1088-6826

ISSN

0002-9939

Publication Date

January 1, 2020

Volume

148

Issue

2

Start / End Page

673 / 679

Related Subject Headings

  • 4904 Pure mathematics
  • 0101 Pure Mathematics