Sample Size Calculations for SMARTs
Sequential Multiple Assignment Randomized Trials (SMARTs) are considered the gold standard for estimation and evaluation of treatment regimes. SMARTs are typically sized to ensure sufficient power for a simple comparison, e.g., the comparison of two fixed treatment sequences. Estimation of an optimal treatment regime is conducted as part of a secondary and hypothesis-generating analysis with formal evaluation of the estimated optimal regime deferred to a follow-up trial. However, running a follow-up trial to evaluate an estimated optimal treatment regime is costly and time-consuming; furthermore, the estimated optimal regime that is to be evaluated in such a follow-up trial may be far from optimal if the original trial was underpowered for estimation of an optimal regime. We derive sample size procedures for a SMART that ensure: (i) sufficient power for comparing the optimal treatment regime with standard of care; and (ii) the estimated optimal regime is within a given tolerance of the true optimal regime with high-probability. We establish asymptotic validity of the proposed procedures and demonstrate their finite sample performance in a series of simulation experiments.