Skip to main content
Journal cover image

Partial Loss of USP9X Function Leads to a Male Neurodevelopmental and Behavioral Disorder Converging on Transforming Growth Factor β Signaling.

Publication ,  Journal Article
Johnson, BV; Kumar, R; Oishi, S; Alexander, S; Kasherman, M; Vega, MS; Ivancevic, A; Gardner, A; Domingo, D; Corbett, M; Parnell, E; Yoon, S ...
Published in: Biol Psychiatry
January 15, 2020

BACKGROUND: The X-chromosome gene USP9X encodes a deubiquitylating enzyme that has been associated with neurodevelopmental disorders primarily in female subjects. USP9X escapes X inactivation, and in female subjects de novo heterozygous copy number loss or truncating mutations cause haploinsufficiency culminating in a recognizable syndrome with intellectual disability and signature brain and congenital abnormalities. In contrast, the involvement of USP9X in male neurodevelopmental disorders remains tentative. METHODS: We used clinically recommended guidelines to collect and interrogate the pathogenicity of 44 USP9X variants associated with neurodevelopmental disorders in males. Functional studies in patient-derived cell lines and mice were used to determine mechanisms of pathology. RESULTS: Twelve missense variants showed strong evidence of pathogenicity. We define a characteristic phenotype of the central nervous system (white matter disturbances, thin corpus callosum, and widened ventricles); global delay with significant alteration of speech, language, and behavior; hypotonia; joint hypermobility; visual system defects; and other common congenital and dysmorphic features. Comparison of in silico and phenotypical features align additional variants of unknown significance with likely pathogenicity. In support of partial loss-of-function mechanisms, using patient-derived cell lines, we show loss of only specific USP9X substrates that regulate neurodevelopmental signaling pathways and a united defect in transforming growth factor β signaling. In addition, we find correlates of the male phenotype in Usp9x brain-specific knockout mice, and further resolve loss of hippocampal-dependent learning and memory. CONCLUSIONS: Our data demonstrate the involvement of USP9X variants in a distinctive neurodevelopmental and behavioral syndrome in male subjects and identify plausible mechanisms of pathogenesis centered on disrupted transforming growth factor β signaling and hippocampal function.

Duke Scholars

Published In

Biol Psychiatry

DOI

EISSN

1873-2402

Publication Date

January 15, 2020

Volume

87

Issue

2

Start / End Page

100 / 112

Location

United States

Related Subject Headings

  • Ubiquitin Thiolesterase
  • Transforming Growth Factor beta
  • Signal Transduction
  • Psychiatry
  • Phenotype
  • Mice
  • Male
  • Intellectual Disability
  • Humans
  • Haploinsufficiency
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Johnson, B. V., Kumar, R., Oishi, S., Alexander, S., Kasherman, M., Vega, M. S., … Jolly, L. A. (2020). Partial Loss of USP9X Function Leads to a Male Neurodevelopmental and Behavioral Disorder Converging on Transforming Growth Factor β Signaling. Biol Psychiatry, 87(2), 100–112. https://doi.org/10.1016/j.biopsych.2019.05.028
Johnson, Brett V., Raman Kumar, Sabrina Oishi, Suzy Alexander, Maria Kasherman, Michelle Sanchez Vega, Atma Ivancevic, et al. “Partial Loss of USP9X Function Leads to a Male Neurodevelopmental and Behavioral Disorder Converging on Transforming Growth Factor β Signaling.Biol Psychiatry 87, no. 2 (January 15, 2020): 100–112. https://doi.org/10.1016/j.biopsych.2019.05.028.
Johnson BV, Kumar R, Oishi S, Alexander S, Kasherman M, Vega MS, et al. Partial Loss of USP9X Function Leads to a Male Neurodevelopmental and Behavioral Disorder Converging on Transforming Growth Factor β Signaling. Biol Psychiatry. 2020 Jan 15;87(2):100–12.
Johnson, Brett V., et al. “Partial Loss of USP9X Function Leads to a Male Neurodevelopmental and Behavioral Disorder Converging on Transforming Growth Factor β Signaling.Biol Psychiatry, vol. 87, no. 2, Jan. 2020, pp. 100–12. Pubmed, doi:10.1016/j.biopsych.2019.05.028.
Johnson BV, Kumar R, Oishi S, Alexander S, Kasherman M, Vega MS, Ivancevic A, Gardner A, Domingo D, Corbett M, Parnell E, Yoon S, Oh T, Lines M, Lefroy H, Kini U, Van Allen M, Grønborg S, Mercier S, Küry S, Bézieau S, Pasquier L, Raynaud M, Afenjar A, Billette de Villemeur T, Keren B, Désir J, Van Maldergem L, Marangoni M, Dikow N, Koolen DA, VanHasselt PM, Weiss M, Zwijnenburg P, Sa J, Reis CF, López-Otín C, Santiago-Fernández O, Fernández-Jaén A, Rauch A, Steindl K, Joset P, Goldstein A, Madan-Khetarpal S, Infante E, Zackai E, Mcdougall C, Narayanan V, Ramsey K, Mercimek-Andrews S, Pena L, Shashi V, Undiagnosed Diseases Network, Schoch K, Sullivan JA, Pinto E Vairo F, Pichurin PN, Ewing SA, Barnett SS, Klee EW, Perry MS, Koenig MK, Keegan CE, Schuette JL, Asher S, Perilla-Young Y, Smith LD, Rosenfeld JA, Bhoj E, Kaplan P, Li D, Oegema R, van Binsbergen E, van der Zwaag B, Smeland MF, Cutcutache I, Page M, Armstrong M, Lin AE, Steeves MA, Hollander ND, Hoffer MJV, Reijnders MRF, Demirdas S, Koboldt DC, Bartholomew D, Mosher TM, Hickey SE, Shieh C, Sanchez-Lara PA, Graham JM, Tezcan K, Schaefer GB, Danylchuk NR, Asamoah A, Jackson KE, Yachelevich N, Au M, Pérez-Jurado LA, Kleefstra T, Penzes P, Wood SA, Burne T, Pierson TM, Piper M, Gécz J, Jolly LA. Partial Loss of USP9X Function Leads to a Male Neurodevelopmental and Behavioral Disorder Converging on Transforming Growth Factor β Signaling. Biol Psychiatry. 2020 Jan 15;87(2):100–112.
Journal cover image

Published In

Biol Psychiatry

DOI

EISSN

1873-2402

Publication Date

January 15, 2020

Volume

87

Issue

2

Start / End Page

100 / 112

Location

United States

Related Subject Headings

  • Ubiquitin Thiolesterase
  • Transforming Growth Factor beta
  • Signal Transduction
  • Psychiatry
  • Phenotype
  • Mice
  • Male
  • Intellectual Disability
  • Humans
  • Haploinsufficiency