Formation of graphene atop a Si adlayer on the C-face of SiC
The structure of the SiC(0001) surface, the C-face of the {0001} SiC surfaces, is studied as a function of temperature and of pressure in a gaseous environment of disilane (Si2H6). Various surface reconstructions are observed, both with and without the presence of an overlying graphene layer (which spontaneously forms at sufficiently high temperatures). Based on cross-sectional scanning transmission electron microscopy measurements, the interface structure that forms in the presence of the graphene is found to contain 1.4-1.7 monolayers (ML) of Si, a somewhat counter-intuitive result since, when the graphene forms, the system is actually under C-rich conditions. Using ab initio thermodynamics, it is demonstrated that there exists a class of Si-rich surfaces containing about 1.3 ML of Si that are stable on the surface (even under C-rich conditions) at temperatures above ∼400 K. The structures that thus form consist of Si adatoms atop a Si adlayer on the C-face of SiC, with or without the presence of overlying graphene.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
Publication Date
Volume
Issue
Related Subject Headings
- 5104 Condensed matter physics
- 4016 Materials engineering
- 3403 Macromolecular and materials chemistry
Citation
Published In
DOI
EISSN
Publication Date
Volume
Issue
Related Subject Headings
- 5104 Condensed matter physics
- 4016 Materials engineering
- 3403 Macromolecular and materials chemistry