Rapid Auto IMRT Planning Using Cascade Dense Convolutional Neural Network (CDCNN): A Feasibility Study for Fluence Map Prediction Using Deep Learning on Prostate IMRT Patients
Publication
, Conference
Wang, C; Li, X; Chang, Y; Sheng, Y; Zhang, J; Yin, FF; Wu, QJJ
Published in: International Journal of Radiation Oncology*Biology*Physics
September 2019
Duke Scholars
Published In
International Journal of Radiation Oncology*Biology*Physics
DOI
ISSN
0360-3016
Publication Date
September 2019
Volume
105
Issue
1
Start / End Page
E789 / E790
Publisher
Elsevier BV
Related Subject Headings
- Oncology & Carcinogenesis
- 5105 Medical and biological physics
- 3407 Theoretical and computational chemistry
- 3211 Oncology and carcinogenesis
- 1112 Oncology and Carcinogenesis
- 1103 Clinical Sciences
- 0299 Other Physical Sciences
Citation
APA
Chicago
ICMJE
MLA
NLM
Wang, C., Li, X., Chang, Y., Sheng, Y., Zhang, J., Yin, F. F., & Wu, Q. J. J. (2019). Rapid Auto IMRT Planning Using Cascade Dense Convolutional Neural Network (CDCNN): A Feasibility Study for Fluence Map Prediction Using Deep Learning on Prostate IMRT Patients. In International Journal of Radiation Oncology*Biology*Physics (Vol. 105, pp. E789–E790). Elsevier BV. https://doi.org/10.1016/j.ijrobp.2019.06.760
Wang, C., X. Li, Y. Chang, Y. Sheng, J. Zhang, F. F. Yin, and Q. J. J. Wu. “Rapid Auto IMRT Planning Using Cascade Dense Convolutional Neural Network (CDCNN): A Feasibility Study for Fluence Map Prediction Using Deep Learning on Prostate IMRT Patients.” In International Journal of Radiation Oncology*Biology*Physics, 105:E789–90. Elsevier BV, 2019. https://doi.org/10.1016/j.ijrobp.2019.06.760.
Wang C, Li X, Chang Y, Sheng Y, Zhang J, Yin FF, et al. Rapid Auto IMRT Planning Using Cascade Dense Convolutional Neural Network (CDCNN): A Feasibility Study for Fluence Map Prediction Using Deep Learning on Prostate IMRT Patients. In: International Journal of Radiation Oncology*Biology*Physics. Elsevier BV; 2019. p. E789–90.
Wang, C., et al. “Rapid Auto IMRT Planning Using Cascade Dense Convolutional Neural Network (CDCNN): A Feasibility Study for Fluence Map Prediction Using Deep Learning on Prostate IMRT Patients.” International Journal of Radiation Oncology*Biology*Physics, vol. 105, no. 1, Elsevier BV, 2019, pp. E789–90. Crossref, doi:10.1016/j.ijrobp.2019.06.760.
Wang C, Li X, Chang Y, Sheng Y, Zhang J, Yin FF, Wu QJJ. Rapid Auto IMRT Planning Using Cascade Dense Convolutional Neural Network (CDCNN): A Feasibility Study for Fluence Map Prediction Using Deep Learning on Prostate IMRT Patients. International Journal of Radiation Oncology*Biology*Physics. Elsevier BV; 2019. p. E789–E790.
Published In
International Journal of Radiation Oncology*Biology*Physics
DOI
ISSN
0360-3016
Publication Date
September 2019
Volume
105
Issue
1
Start / End Page
E789 / E790
Publisher
Elsevier BV
Related Subject Headings
- Oncology & Carcinogenesis
- 5105 Medical and biological physics
- 3407 Theoretical and computational chemistry
- 3211 Oncology and carcinogenesis
- 1112 Oncology and Carcinogenesis
- 1103 Clinical Sciences
- 0299 Other Physical Sciences