Skip to main content
Journal cover image

Carrier-resolved photo-Hall effect.

Publication ,  Journal Article
Gunawan, O; Pae, SR; Bishop, DM; Virgus, Y; Noh, JH; Jeon, NJ; Lee, YS; Shao, X; Todorov, T; Mitzi, DB; Shin, B
Published in: Nature
November 2019

The fundamental parameters of majority and minority charge carriers-including their type, density and mobility-govern the performance of semiconductor devices yet can be difficult to measure. Although the Hall measurement technique is currently the standard for extracting the properties of majority carriers, those of minority carriers have typically only been accessible through the application of separate techniques. Here we demonstrate an extension to the classic Hall measurement-a carrier-resolved photo-Hall technique-that enables us to simultaneously obtain the mobility and concentration of both majority and minority carriers, as well as the recombination lifetime, diffusion length and recombination coefficient. This is enabled by advances in a.c.-field Hall measurement using a rotating parallel dipole line system and an equation, ΔμH = d(σ2H)/dσ, which relates the hole-electron Hall mobility difference (ΔμH), the conductivity (σ) and the Hall coefficient (H). We apply this technique to various solar absorbers-including high-performance lead-iodide-based perovskites-and demonstrate simultaneous access to majority and minority carrier parameters and map the results against varying light intensities. This information, which is buried within the photo-Hall measurement1,2, had remained inaccessible since the original discovery of the Hall effect in 18793. The simultaneous measurement of majority and minority carriers should have broad applications, including in photovoltaics and other optoelectronic devices.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Nature

DOI

EISSN

1476-4687

ISSN

0028-0836

Publication Date

November 2019

Volume

575

Issue

7781

Start / End Page

151 / 155

Related Subject Headings

  • General Science & Technology
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Gunawan, O., Pae, S. R., Bishop, D. M., Virgus, Y., Noh, J. H., Jeon, N. J., … Shin, B. (2019). Carrier-resolved photo-Hall effect. Nature, 575(7781), 151–155. https://doi.org/10.1038/s41586-019-1632-2
Gunawan, Oki, Seong Ryul Pae, Douglas M. Bishop, Yudistira Virgus, Jun Hong Noh, Nam Joong Jeon, Yun Seog Lee, et al. “Carrier-resolved photo-Hall effect.Nature 575, no. 7781 (November 2019): 151–55. https://doi.org/10.1038/s41586-019-1632-2.
Gunawan O, Pae SR, Bishop DM, Virgus Y, Noh JH, Jeon NJ, et al. Carrier-resolved photo-Hall effect. Nature. 2019 Nov;575(7781):151–5.
Gunawan, Oki, et al. “Carrier-resolved photo-Hall effect.Nature, vol. 575, no. 7781, Nov. 2019, pp. 151–55. Epmc, doi:10.1038/s41586-019-1632-2.
Gunawan O, Pae SR, Bishop DM, Virgus Y, Noh JH, Jeon NJ, Lee YS, Shao X, Todorov T, Mitzi DB, Shin B. Carrier-resolved photo-Hall effect. Nature. 2019 Nov;575(7781):151–155.
Journal cover image

Published In

Nature

DOI

EISSN

1476-4687

ISSN

0028-0836

Publication Date

November 2019

Volume

575

Issue

7781

Start / End Page

151 / 155

Related Subject Headings

  • General Science & Technology