Skip to main content
Journal cover image

Optimization of Meniscus Cell Transduction Using Lentivirus and Adeno-Associated Virus for Gene Editing and Tissue Engineering Applications.

Publication ,  Journal Article
Arrigoni, P; Ruprecht, JC; Chasse, DAD; Glass, KA; Andress, B; Guilak, F; Weinberg, JB; McNulty, AL
Published in: Cartilage
December 2021

OBJECTIVES: The utilization of viral vectors to deliver genes of interest directly to meniscus cells and promote long-term modulation of gene expression may prove useful to enhance meniscus repair and regeneration. The objective of this study was to optimize and compare the potential of lentivirus (LV) and adeno-associated virus (AAV) to deliver transgenes to meniscus cells in both intact meniscus tissue and isolated primary cells in monolayer. DESIGN: Porcine meniscus tissue explants and primary meniscus cells in monolayer were transduced with LV or self-complementary AAV2 (scAAV2) encoding green fluorescent protein (GFP). Following transduction, explants were enzymatically digested to isolate meniscus cells, and monolayer cells were trypsinized. Isolated cells were analyzed by flow cytometry to determine percent transduction. RESULTS: LV and scAAV2 showed a high transduction efficiency in monolayer meniscus cells. scAAV2 was most effective at transducing cells within intact meniscus tissue but the efficiency was less than 20%. Outer zone meniscus cells were more readily transduced by both LV and scAAV2 than the inner zone cells. Higher virus titers and higher cell density resulted in improved transduction efficiency. Polybrene was necessary for the highest transduction efficiency with LV, but it reduced scAAV2 transduction. CONCLUSIONS: Both LV and scAAV2 efficiently transduce primary meniscus cells but only scAAV2 can modestly transduce cells embedded in meniscus tissue. This work lays the foundation for viral gene transfer to be utilized to deliver bioactive transgenes or gene editing machinery, which can induce long-term and tunable expression of therapeutic proteins from tissue-engineered constructs for meniscus repair and regeneration.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Cartilage

DOI

EISSN

1947-6043

Publication Date

December 2021

Volume

13

Issue

2_suppl

Start / End Page

1602S / 1607S

Location

United States

Related Subject Headings

  • Tissue Engineering
  • Meniscus
  • Lentivirus
  • Gene Editing
  • Dependovirus
  • 3202 Clinical sciences
  • 1103 Clinical Sciences
  • 1004 Medical Biotechnology
  • 0903 Biomedical Engineering
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Arrigoni, P., Ruprecht, J. C., Chasse, D. A. D., Glass, K. A., Andress, B., Guilak, F., … McNulty, A. L. (2021). Optimization of Meniscus Cell Transduction Using Lentivirus and Adeno-Associated Virus for Gene Editing and Tissue Engineering Applications. Cartilage, 13(2_suppl), 1602S-1607S. https://doi.org/10.1177/1947603519880321
Arrigoni, Paolo, Jacob C. Ruprecht, Dawn A. D. Chasse, Katherine A. Glass, Benjamin Andress, Farshid Guilak, J Brice Weinberg, and Amy L. McNulty. “Optimization of Meniscus Cell Transduction Using Lentivirus and Adeno-Associated Virus for Gene Editing and Tissue Engineering Applications.Cartilage 13, no. 2_suppl (December 2021): 1602S-1607S. https://doi.org/10.1177/1947603519880321.
Arrigoni P, Ruprecht JC, Chasse DAD, Glass KA, Andress B, Guilak F, et al. Optimization of Meniscus Cell Transduction Using Lentivirus and Adeno-Associated Virus for Gene Editing and Tissue Engineering Applications. Cartilage. 2021 Dec;13(2_suppl):1602S-1607S.
Arrigoni, Paolo, et al. “Optimization of Meniscus Cell Transduction Using Lentivirus and Adeno-Associated Virus for Gene Editing and Tissue Engineering Applications.Cartilage, vol. 13, no. 2_suppl, Dec. 2021, pp. 1602S-1607S. Pubmed, doi:10.1177/1947603519880321.
Arrigoni P, Ruprecht JC, Chasse DAD, Glass KA, Andress B, Guilak F, Weinberg JB, McNulty AL. Optimization of Meniscus Cell Transduction Using Lentivirus and Adeno-Associated Virus for Gene Editing and Tissue Engineering Applications. Cartilage. 2021 Dec;13(2_suppl):1602S-1607S.
Journal cover image

Published In

Cartilage

DOI

EISSN

1947-6043

Publication Date

December 2021

Volume

13

Issue

2_suppl

Start / End Page

1602S / 1607S

Location

United States

Related Subject Headings

  • Tissue Engineering
  • Meniscus
  • Lentivirus
  • Gene Editing
  • Dependovirus
  • 3202 Clinical sciences
  • 1103 Clinical Sciences
  • 1004 Medical Biotechnology
  • 0903 Biomedical Engineering