Skip to main content
Journal cover image

Numerical methods for Kohn-Sham density functional theory

Publication ,  Journal Article
Lin, L; Lu, J; Ying, L
Published in: Acta Numerica
May 1, 2019

Kohn-Sham density functional theory (DFT) is the most widely used electronic structure theory. Despite significant progress in the past few decades, the numerical solution of Kohn-Sham DFT problems remains challenging, especially for large-scale systems. In this paper we review the basics as well as state-of-the-art numerical methods, and focus on the unique numerical challenges of DFT.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Acta Numerica

DOI

EISSN

1474-0508

ISSN

0962-4929

Publication Date

May 1, 2019

Volume

28

Start / End Page

405 / 539

Related Subject Headings

  • Numerical & Computational Mathematics
  • 4905 Statistics
  • 4901 Applied mathematics
  • 0103 Numerical and Computational Mathematics
  • 0102 Applied Mathematics
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Lin, L., Lu, J., & Ying, L. (2019). Numerical methods for Kohn-Sham density functional theory. Acta Numerica, 28, 405–539. https://doi.org/10.1017/S0962492919000047
Lin, L., J. Lu, and L. Ying. “Numerical methods for Kohn-Sham density functional theory.” Acta Numerica 28 (May 1, 2019): 405–539. https://doi.org/10.1017/S0962492919000047.
Lin L, Lu J, Ying L. Numerical methods for Kohn-Sham density functional theory. Acta Numerica. 2019 May 1;28:405–539.
Lin, L., et al. “Numerical methods for Kohn-Sham density functional theory.” Acta Numerica, vol. 28, May 2019, pp. 405–539. Scopus, doi:10.1017/S0962492919000047.
Lin L, Lu J, Ying L. Numerical methods for Kohn-Sham density functional theory. Acta Numerica. 2019 May 1;28:405–539.
Journal cover image

Published In

Acta Numerica

DOI

EISSN

1474-0508

ISSN

0962-4929

Publication Date

May 1, 2019

Volume

28

Start / End Page

405 / 539

Related Subject Headings

  • Numerical & Computational Mathematics
  • 4905 Statistics
  • 4901 Applied mathematics
  • 0103 Numerical and Computational Mathematics
  • 0102 Applied Mathematics