Skip to main content
Journal cover image

Non-invasive diagnosis of endometriosis: using machine learning instead of the operating room

Publication ,  Conference
Shaia, KL; Acharya, CR; Smeltzer, S; Lyerly, HK; Acharya, KS
Published in: Fertility and Sterility
September 2019

Duke Scholars

Published In

Fertility and Sterility

DOI

ISSN

0015-0282

Publication Date

September 2019

Volume

112

Issue

3

Start / End Page

e80 / e80

Publisher

Elsevier BV

Related Subject Headings

  • Obstetrics & Reproductive Medicine
  • 3215 Reproductive medicine
  • 1117 Public Health and Health Services
  • 1114 Paediatrics and Reproductive Medicine
  • 1103 Clinical Sciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Shaia, K. L., Acharya, C. R., Smeltzer, S., Lyerly, H. K., & Acharya, K. S. (2019). Non-invasive diagnosis of endometriosis: using machine learning instead of the operating room. In Fertility and Sterility (Vol. 112, pp. e80–e80). Elsevier BV. https://doi.org/10.1016/j.fertnstert.2019.07.331
Shaia, Kathryn L., Chaitanya R. Acharya, Stephanie Smeltzer, Herbert K. Lyerly, and Kelly S. Acharya. “Non-invasive diagnosis of endometriosis: using machine learning instead of the operating room.” In Fertility and Sterility, 112:e80–e80. Elsevier BV, 2019. https://doi.org/10.1016/j.fertnstert.2019.07.331.
Shaia KL, Acharya CR, Smeltzer S, Lyerly HK, Acharya KS. Non-invasive diagnosis of endometriosis: using machine learning instead of the operating room. In: Fertility and Sterility. Elsevier BV; 2019. p. e80–e80.
Shaia, Kathryn L., et al. “Non-invasive diagnosis of endometriosis: using machine learning instead of the operating room.” Fertility and Sterility, vol. 112, no. 3, Elsevier BV, 2019, pp. e80–e80. Crossref, doi:10.1016/j.fertnstert.2019.07.331.
Shaia KL, Acharya CR, Smeltzer S, Lyerly HK, Acharya KS. Non-invasive diagnosis of endometriosis: using machine learning instead of the operating room. Fertility and Sterility. Elsevier BV; 2019. p. e80–e80.
Journal cover image

Published In

Fertility and Sterility

DOI

ISSN

0015-0282

Publication Date

September 2019

Volume

112

Issue

3

Start / End Page

e80 / e80

Publisher

Elsevier BV

Related Subject Headings

  • Obstetrics & Reproductive Medicine
  • 3215 Reproductive medicine
  • 1117 Public Health and Health Services
  • 1114 Paediatrics and Reproductive Medicine
  • 1103 Clinical Sciences