Skip to main content

Disrupted Blood-Retina Lysophosphatidylcholine Transport Impairs Photoreceptor Health But Not Visual Signal Transduction.

Publication ,  Journal Article
Lobanova, ES; Schuhmann, K; Finkelstein, S; Lewis, TR; Cady, MA; Hao, Y; Keuthan, C; Ash, JD; Burns, ME; Shevchenko, A; Arshavsky, VY
Published in: J Neurosci
December 4, 2019

Retinal photoreceptor cells contain the highest concentration of docosahexaenoic acid (DHA) in our bodies, and it has been long assumed that this is critical for supporting normal vision. Indeed, early studies using DHA dietary restriction documented reduced light sensitivity by DHA-deprived retinas. Recently, it has been demonstrated that a major route of DHA entry in the retina is the delivery across the blood-retina barrier by the sodium-dependent lipid transporter, Mfsd2a. This discovery opened a unique opportunity to analyze photoreceptor health and function in DHA-deprived retinas using the Mfsd2a knock-out mouse as animal model. Our lipidome analyses of Mfsd2a-/- retinas and outer segment membranes corroborated the previously reported decrease in the fraction of DHA-containing phospholipids and a compensatory increase in phospholipids containing arachidonic acid. We also revealed an increase in the retinal content of monounsaturated fatty acids and a reduction in very long chain fatty acids. These changes could be explained by a combination of reduced DHA supply to the retina and a concomitant upregulation of several fatty acid desaturases controlled by sterol regulatory element-binding transcription factors, which are upregulated in Mfsd2a-/- retinas. Mfsd2a-/- retinas undergo slow progressive degeneration, with ∼30% of photoreceptor cells lost by the age of 6 months. Despite this pathology, the ultrastructure Mfsd2a-/- photoreceptors and their ability to produce light responses were essentially normal. These data demonstrate that, whereas maintaining the lysophosphatidylcholine route of DHA supply to the retina is essential for long-term photoreceptor survival, it is not important for supporting normal phototransduction.SIGNIFICANCE STATEMENT Phospholipids containing docosahexaenoic acid (DHA) are greatly enriched in the nervous system, with the highest concentration found in the light-sensitive membranes of photoreceptor cells. In this study, we analyzed the consequences of impaired DHA transport across the blood-retina barrier. We have found that, in addition to a predictable reduction in the DHA level, the affected retinas undergo a complex, transcriptionally-driven rebuilding of their membrane lipidome in a pattern preserving the overall saturation/desaturation balance of retinal phospholipids. Remarkably, these changes do not affect the ability of photoreceptors to produce responses to light but are detrimental for the long-term survival of these cells.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

J Neurosci

DOI

EISSN

1529-2401

Publication Date

December 4, 2019

Volume

39

Issue

49

Start / End Page

9689 / 9701

Location

United States

Related Subject Headings

  • Symporters
  • Signal Transduction
  • Rod Cell Outer Segment
  • Retinal Degeneration
  • Retina
  • Pregnancy
  • Photoreceptor Cells, Vertebrate
  • Photic Stimulation
  • Neurology & Neurosurgery
  • Mice, Knockout
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Lobanova, E. S., Schuhmann, K., Finkelstein, S., Lewis, T. R., Cady, M. A., Hao, Y., … Arshavsky, V. Y. (2019). Disrupted Blood-Retina Lysophosphatidylcholine Transport Impairs Photoreceptor Health But Not Visual Signal Transduction. J Neurosci, 39(49), 9689–9701. https://doi.org/10.1523/JNEUROSCI.1142-19.2019
Lobanova, Ekaterina S., Kai Schuhmann, Stella Finkelstein, Tylor R. Lewis, Martha A. Cady, Ying Hao, Casey Keuthan, et al. “Disrupted Blood-Retina Lysophosphatidylcholine Transport Impairs Photoreceptor Health But Not Visual Signal Transduction.J Neurosci 39, no. 49 (December 4, 2019): 9689–9701. https://doi.org/10.1523/JNEUROSCI.1142-19.2019.
Lobanova ES, Schuhmann K, Finkelstein S, Lewis TR, Cady MA, Hao Y, et al. Disrupted Blood-Retina Lysophosphatidylcholine Transport Impairs Photoreceptor Health But Not Visual Signal Transduction. J Neurosci. 2019 Dec 4;39(49):9689–701.
Lobanova, Ekaterina S., et al. “Disrupted Blood-Retina Lysophosphatidylcholine Transport Impairs Photoreceptor Health But Not Visual Signal Transduction.J Neurosci, vol. 39, no. 49, Dec. 2019, pp. 9689–701. Pubmed, doi:10.1523/JNEUROSCI.1142-19.2019.
Lobanova ES, Schuhmann K, Finkelstein S, Lewis TR, Cady MA, Hao Y, Keuthan C, Ash JD, Burns ME, Shevchenko A, Arshavsky VY. Disrupted Blood-Retina Lysophosphatidylcholine Transport Impairs Photoreceptor Health But Not Visual Signal Transduction. J Neurosci. 2019 Dec 4;39(49):9689–9701.

Published In

J Neurosci

DOI

EISSN

1529-2401

Publication Date

December 4, 2019

Volume

39

Issue

49

Start / End Page

9689 / 9701

Location

United States

Related Subject Headings

  • Symporters
  • Signal Transduction
  • Rod Cell Outer Segment
  • Retinal Degeneration
  • Retina
  • Pregnancy
  • Photoreceptor Cells, Vertebrate
  • Photic Stimulation
  • Neurology & Neurosurgery
  • Mice, Knockout