Skip to main content

Glycosylation of gigaxonin regulates intermediate filaments: Novel molecular insights into giant axonal neuropathy

Publication ,  Journal Article
CHEN, PO-HAN; Smith, T; Hu, J; Pan, S; Smith, A; Lu, A; Chi, J-T; Boyce, M
2019

Gigaxonin (also known as KLHL16) is an E3 ligase adaptor protein that promotes the ubiquitination and degradation of intermediate filament (IF) proteins. Mutations in human gigaxonin cause the fatal neurodegenerative disease giant axonal neuropathy (GAN), in which IF proteins accumulate and aggregate in axons throughout the nervous system, impairing neuronal function and viability. Despite this pathophysiological significance, the upstream regulation and downstream effects of normal and aberrant gigaxonin function remain incompletely understood. Here, we report that gigaxonin is modified by O-linked-beta-N-acetylglucosamine (O-GlcNAc), a prevalent form of intracellular glycosylation, in a nutrient- and growth factor-dependent manner. Mass spectrometry analyses of human gigaxonin revealed nine candidate sites of O-GlcNAcylation, two of which - serine 272 and threonine 277 - are required for its ability to mediate IF turnover in novel gigaxonin-deficient human cell models that we created. Taken together, these results suggest that nutrient-responsive gigaxonin O-GlcNAcylation forms a regulatory link between metabolism and IF proteostasis. Our work may have significant implications for understanding the non-genetic modifiers of GAN phenotypes and for the optimization of gene therapy for this disease.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

DOI

Publication Date

2019
 

Citation

APA
Chicago
ICMJE
MLA
NLM
CHEN, P.-H., Smith, T., Hu, J., Pan, S., Smith, A., Lu, A., … Boyce, M. (2019). Glycosylation of gigaxonin regulates intermediate filaments: Novel molecular insights into giant axonal neuropathy. https://doi.org/10.1101/530303
CHEN, P. O. -. H. A. N., Timothy Smith, Jimin Hu, Samuel Pan, Alexander Smith, Annie Lu, Jen-Tsan Chi, and Michael Boyce. “Glycosylation of gigaxonin regulates intermediate filaments: Novel molecular insights into giant axonal neuropathy,” 2019. https://doi.org/10.1101/530303.

DOI

Publication Date

2019