Snapshot Photoacoustic Topography Through an Ergodic Relay for High-throughput Imaging of Optical Absorption.
Current embodiments of photoacoustic imaging require either serial detection with a single-element ultrasonic transducer or parallel detection with an ultrasonic array, necessitating a trade-off between cost and throughput. Here, we present photoacoustic topography through an ergodic relay (PATER) for low-cost high-throughput snapshot widefield imaging. Encoding spatial information with randomized temporal signatures through ergodicity, PATER requires only a single-element ultrasonic transducer to capture a widefield image with a single laser shot. We applied PATER to demonstrate both functional imaging of hemodynamic responses and high-speed imaging of blood pulse wave propagation in mice in vivo. Leveraging the high frame rate of 2 kHz, PATER tracked and localized moving melanoma tumor cells in the mouse brain in vivo, which enabled flow velocity quantification and super-resolution imaging. Among the potential biomedical applications of PATER, wearable monitoring of human vital signs in particular is envisaged.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Optoelectronics & Photonics
- 51 Physical sciences
- 49 Mathematical sciences
- 02 Physical Sciences
- 01 Mathematical Sciences
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Optoelectronics & Photonics
- 51 Physical sciences
- 49 Mathematical sciences
- 02 Physical Sciences
- 01 Mathematical Sciences