Revisiting Bayesian constraints on the transport coefficients of QCD
Multistage models based on relativistic viscous hydrodynamics have proven successful in describing hadron measurements from relativistic nuclear collisions. These measurements are sensitive to the shear and the bulk viscosities of QCD and provide a unique opportunity to constrain these transport coefficients. Bayesian analyses can be used to obtain systematic constraints on the viscosities of QCD, through methodical model-to-data comparisons. In this manuscript, we discuss recent developments in Bayesian analyses of heavy ion collision data. We highlight the essential role of closure tests in validating a Bayesian analysis before comparison with measurements. We discuss the role of the emulator that is used as proxy for the multistage theoretical model. We use an ongoing Bayesian analysis of soft hadron measurements by the JETSCAPE Collaboration as context for the discussion.
Duke Scholars
Publication Date
Related Subject Headings
- Nuclear & Particles Physics
- 5107 Particle and high energy physics
- 5106 Nuclear and plasma physics
- 5101 Astronomical sciences
- 0206 Quantum Physics
- 0202 Atomic, Molecular, Nuclear, Particle and Plasma Physics
- 0201 Astronomical and Space Sciences
Citation
Publication Date
Related Subject Headings
- Nuclear & Particles Physics
- 5107 Particle and high energy physics
- 5106 Nuclear and plasma physics
- 5101 Astronomical sciences
- 0206 Quantum Physics
- 0202 Atomic, Molecular, Nuclear, Particle and Plasma Physics
- 0201 Astronomical and Space Sciences