Efficient posterior sampling for high-dimensional imbalanced logistic regression.
Classification with high-dimensional data is of widespread interest and often involves dealing with imbalanced data. Bayesian classification approaches are hampered by the fact that current Markov chain Monte Carlo algorithms for posterior computation become inefficient as the number [Formula: see text] of predictors or the number [Formula: see text] of subjects to classify gets large, because of the increasing computational time per step and worsening mixing rates. One strategy is to employ a gradient-based sampler to improve mixing while using data subsamples to reduce the per-step computational complexity. However, the usual subsampling breaks down when applied to imbalanced data. Instead, we generalize piecewise-deterministic Markov chain Monte Carlo algorithms to include importance-weighted and mini-batch subsampling. These maintain the correct stationary distribution with arbitrarily small subsamples and substantially outperform current competitors. We provide theoretical support for the proposed approach and demonstrate its performance gains in simulated data examples and an application to cancer data.
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Statistics & Probability
- 4905 Statistics
- 3802 Econometrics
- 1403 Econometrics
- 0104 Statistics
- 0103 Numerical and Computational Mathematics
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Statistics & Probability
- 4905 Statistics
- 3802 Econometrics
- 1403 Econometrics
- 0104 Statistics
- 0103 Numerical and Computational Mathematics