Skip to main content

Prediction Models - Development, Evaluation, and Clinical Application.

Publication ,  Journal Article
Pencina, MJ; Goldstein, BA; D'Agostino, RB
Published in: N Engl J Med
April 23, 2020

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

N Engl J Med

DOI

EISSN

1533-4406

Publication Date

April 23, 2020

Volume

382

Issue

17

Start / End Page

1583 / 1586

Location

United States

Related Subject Headings

  • Risk Assessment
  • Models, Theoretical
  • Models, Statistical
  • Machine Learning
  • Humans
  • General & Internal Medicine
  • Decision Support Techniques
  • Datasets as Topic
  • 42 Health sciences
  • 32 Biomedical and clinical sciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Pencina, M. J., Goldstein, B. A., & D’Agostino, R. B. (2020). Prediction Models - Development, Evaluation, and Clinical Application. N Engl J Med, 382(17), 1583–1586. https://doi.org/10.1056/NEJMp2000589
Pencina, Michael J., Benjamin A. Goldstein, and Ralph B. D’Agostino. “Prediction Models - Development, Evaluation, and Clinical Application.N Engl J Med 382, no. 17 (April 23, 2020): 1583–86. https://doi.org/10.1056/NEJMp2000589.
Pencina MJ, Goldstein BA, D’Agostino RB. Prediction Models - Development, Evaluation, and Clinical Application. N Engl J Med. 2020 Apr 23;382(17):1583–6.
Pencina, Michael J., et al. “Prediction Models - Development, Evaluation, and Clinical Application.N Engl J Med, vol. 382, no. 17, Apr. 2020, pp. 1583–86. Pubmed, doi:10.1056/NEJMp2000589.
Pencina MJ, Goldstein BA, D’Agostino RB. Prediction Models - Development, Evaluation, and Clinical Application. N Engl J Med. 2020 Apr 23;382(17):1583–1586.

Published In

N Engl J Med

DOI

EISSN

1533-4406

Publication Date

April 23, 2020

Volume

382

Issue

17

Start / End Page

1583 / 1586

Location

United States

Related Subject Headings

  • Risk Assessment
  • Models, Theoretical
  • Models, Statistical
  • Machine Learning
  • Humans
  • General & Internal Medicine
  • Decision Support Techniques
  • Datasets as Topic
  • 42 Health sciences
  • 32 Biomedical and clinical sciences