Skip to main content

Isoprenylcysteine carboxylmethyltransferase is required for the impact of mutant KRAS on TAZ protein level and cancer cell self-renewal.

Publication ,  Journal Article
Chai, TF; Manu, KA; Casey, PJ; Wang, M
Published in: Oncogene
July 2020

Cancer stem cells possess the capacity for self-renewal and resistance to chemotherapy. It is therefore crucial to understand the molecular regulators of stemness in the quest to develop effective cancer therapies. TAZ is a transcription activator that promotes stem cell functions in post-development mammalian cells; suppression of TAZ activity reduces or eliminates cancer stemness in select cancers. Isoprenylcysteine carboxylmethyltransferase (ICMT) is the unique enzyme of the last step of posttranslational prenylation processing pathway that modifies several oncogenic proteins, including RAS. We found that suppression of ICMT results in reduced self-renewal/stemness in KRAS-driven pancreatic and breast cancer cells. Silencing of ICMT led to significant reduction of TAZ protein levels and loss of self-renewal ability, which could be reversed by overexpressing mutant KRAS, demonstrating the functional impact of ICMT modification on the ability of KRAS to control TAZ stability and function. Contrary to expectation, YAP protein levels appear to be much less susceptible than TAZ to the regulation by ICMT and KRAS, and YAP is less consequential in regulating stemness characteristics in these cells. Further, we found that the ICMT-dependent KRAS regulation of TAZ was mediated through RAF, but not PI3K, signaling. Functionally, we demonstrate that a signaling cascade from ICMT modification of KRAS to TAZ protein stability supports cancer cell self-renewal abilities in both in vitro and in vivo settings. In addition, studies using the proof-of-concept small molecule inhibitors of ICMT confirmed its role in regulating TAZ and self-renewal, demonstrating the potential utility of targeting ICMT to control aggressive KRAS-driven cancers.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Oncogene

DOI

EISSN

1476-5594

Publication Date

July 2020

Volume

39

Issue

31

Start / End Page

5373 / 5389

Location

England

Related Subject Headings

  • Transcriptional Coactivator with PDZ-Binding Motif Proteins
  • Trans-Activators
  • Proto-Oncogene Proteins p21(ras)
  • Protein Methyltransferases
  • Pancreatic Neoplasms
  • Oncology & Carcinogenesis
  • Neoplastic Stem Cells
  • Mutation
  • Mice, SCID
  • Mice, Inbred NOD
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Chai, T. F., Manu, K. A., Casey, P. J., & Wang, M. (2020). Isoprenylcysteine carboxylmethyltransferase is required for the impact of mutant KRAS on TAZ protein level and cancer cell self-renewal. Oncogene, 39(31), 5373–5389. https://doi.org/10.1038/s41388-020-1364-7
Chai, Tin Fan, Kanjoormana Aryan Manu, Patrick J. Casey, and Mei Wang. “Isoprenylcysteine carboxylmethyltransferase is required for the impact of mutant KRAS on TAZ protein level and cancer cell self-renewal.Oncogene 39, no. 31 (July 2020): 5373–89. https://doi.org/10.1038/s41388-020-1364-7.
Chai, Tin Fan, et al. “Isoprenylcysteine carboxylmethyltransferase is required for the impact of mutant KRAS on TAZ protein level and cancer cell self-renewal.Oncogene, vol. 39, no. 31, July 2020, pp. 5373–89. Pubmed, doi:10.1038/s41388-020-1364-7.

Published In

Oncogene

DOI

EISSN

1476-5594

Publication Date

July 2020

Volume

39

Issue

31

Start / End Page

5373 / 5389

Location

England

Related Subject Headings

  • Transcriptional Coactivator with PDZ-Binding Motif Proteins
  • Trans-Activators
  • Proto-Oncogene Proteins p21(ras)
  • Protein Methyltransferases
  • Pancreatic Neoplasms
  • Oncology & Carcinogenesis
  • Neoplastic Stem Cells
  • Mutation
  • Mice, SCID
  • Mice, Inbred NOD