Skip to main content
Journal cover image

The fate of human platelets exposed to porcine renal endothelium: a single-pass model of platelet uptake in domestic and genetically modified porcine organs.

Publication ,  Journal Article
Butler, JR; Martens, GR; Li, P; Wang, Z-Y; Estrada, JL; Ladowski, JM; Tector, M; Tector, AJ
Published in: The Journal of surgical research
February 2016

Thrombocytopenia may represent a significant challenge to the clinical application of solid-organ xenotransplantation. When studied in a pig-to-primate model, consumptive coagulopathy has challenged renal xenografts. New strategies of genetic manipulation have altered porcine carbohydrate profiles to significantly reduce human antibody binding to pig cells. As this process continues to eliminate immunologic barriers to clinical xenotransplantation, the relationship between human platelets and pig organs must be considered.Genetically modified pigs that were created by the CRISPR/Cas9 system with α-1,3-galactosyltransferase (GGTA1)(-/-) or GGTA1(-/-) cytidine monophosphate-N-acetylneuraminic acid hydroxylase(-/-) phenotype, as well as domestic pigs, were used in this study. Autologous porcine platelets were isolated from donor animal blood collection, and human platelets were obtained from a blood bank. Platelets were fluorescently labeled and in a single-pass model, human, or autologous platelets were perfused through porcine organs at a constant concentration and controlled temperature. Platelet uptake was measured by sampling venous output and measuring sample florescence against input florescence. In vitro study of the interaction between human platelets and porcine endothelial cells was accomplished by immunohistochemical stain and confocal microscopy.Differences between human and autologous platelet loss through the porcine kidney were not significant in any genetic background tested (WT P = 0.15, GGTA1(-/-)P = 0.12, GGTA1(-/-) cytidine monophosphate-N-acetylneuraminic acid hydroxylase(-/-)P = 0.25). The unmodified porcine liver consumed human platelets in a single-pass model of platelet perfusion in fewer than 10 min. WT suprahepatic inferior vena cava fluoresce reached a maximum of 76% of input fluoresce within the human platelet cohort and was significantly lower than the autologous platelet control cohort (P = 0.001). Confocal microscopic analysis did not demonstrate a significant association between human platelets and porcine renal endothelial cells compared with porcine liver endothelial positive controls.Our results suggest that in the absence of immunologic injury, human platelets respond in a variable fashion to organ-specific porcine endothelial surfaces. Human platelets are not removed from circulation by exposure to porcine renal endothelium but are removed by unmodified porcine hepatic endothelium. Kidneys possessing genetic modifications currently relevant to clinical xenotransplantation failed to consume human platelets in an isolated single-pass model. Human platelets did not exhibit significant binding to renal endothelial cells by in vitro assay.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

The Journal of surgical research

DOI

EISSN

1095-8673

ISSN

0022-4804

Publication Date

February 2016

Volume

200

Issue

2

Start / End Page

698 / 706

Related Subject Headings

  • Transplantation, Heterologous
  • Thrombocytopenia
  • Swine
  • Sus scrofa
  • Surgery
  • Random Allocation
  • Postoperative Complications
  • Mixed Function Oxygenases
  • Liver
  • Kidney Transplantation
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Butler, J. R., Martens, G. R., Li, P., Wang, Z.-Y., Estrada, J. L., Ladowski, J. M., … Tector, A. J. (2016). The fate of human platelets exposed to porcine renal endothelium: a single-pass model of platelet uptake in domestic and genetically modified porcine organs. The Journal of Surgical Research, 200(2), 698–706. https://doi.org/10.1016/j.jss.2015.08.034
Butler, James R., Gregory R. Martens, Ping Li, Zheng-Yu Wang, Jose L. Estrada, Joseph M. Ladowski, Matt Tector, and A Joseph Tector. “The fate of human platelets exposed to porcine renal endothelium: a single-pass model of platelet uptake in domestic and genetically modified porcine organs.The Journal of Surgical Research 200, no. 2 (February 2016): 698–706. https://doi.org/10.1016/j.jss.2015.08.034.
Butler JR, Martens GR, Li P, Wang Z-Y, Estrada JL, Ladowski JM, et al. The fate of human platelets exposed to porcine renal endothelium: a single-pass model of platelet uptake in domestic and genetically modified porcine organs. The Journal of surgical research. 2016 Feb;200(2):698–706.
Butler, James R., et al. “The fate of human platelets exposed to porcine renal endothelium: a single-pass model of platelet uptake in domestic and genetically modified porcine organs.The Journal of Surgical Research, vol. 200, no. 2, Feb. 2016, pp. 698–706. Epmc, doi:10.1016/j.jss.2015.08.034.
Butler JR, Martens GR, Li P, Wang Z-Y, Estrada JL, Ladowski JM, Tector M, Tector AJ. The fate of human platelets exposed to porcine renal endothelium: a single-pass model of platelet uptake in domestic and genetically modified porcine organs. The Journal of surgical research. 2016 Feb;200(2):698–706.
Journal cover image

Published In

The Journal of surgical research

DOI

EISSN

1095-8673

ISSN

0022-4804

Publication Date

February 2016

Volume

200

Issue

2

Start / End Page

698 / 706

Related Subject Headings

  • Transplantation, Heterologous
  • Thrombocytopenia
  • Swine
  • Sus scrofa
  • Surgery
  • Random Allocation
  • Postoperative Complications
  • Mixed Function Oxygenases
  • Liver
  • Kidney Transplantation