Algebraic voting theory & representations of Sm≀Sn
Publication
, Journal Article
Barcelo, H; Bernstein, M; Bockting-Conrad, S; McNicholas, E; Nyman, K; Viel, S
Published in: Advances in Applied Mathematics
September 1, 2020
We consider the problem of selecting an n-member committee made up of one of m candidates from each of n distinct departments. Using an algebraic approach, we analyze positional voting procedures, including the Borda count, as QS
Duke Scholars
Published In
Advances in Applied Mathematics
DOI
EISSN
1090-2074
ISSN
0196-8858
Publication Date
September 1, 2020
Volume
120
Related Subject Headings
- Applied Mathematics
- 4904 Pure mathematics
- 4901 Applied mathematics
- 0102 Applied Mathematics
- 0101 Pure Mathematics
Citation
APA
Chicago
ICMJE
MLA
NLM
Barcelo, H., Bernstein, M., Bockting-Conrad, S., McNicholas, E., Nyman, K., & Viel, S. (2020). Algebraic voting theory & representations of Sm≀Sn. Advances in Applied Mathematics, 120. https://doi.org/10.1016/j.aam.2020.102077
Barcelo, H., M. Bernstein, S. Bockting-Conrad, E. McNicholas, K. Nyman, and S. Viel. “Algebraic voting theory & representations of Sm≀Sn.” Advances in Applied Mathematics 120 (September 1, 2020). https://doi.org/10.1016/j.aam.2020.102077.
Barcelo H, Bernstein M, Bockting-Conrad S, McNicholas E, Nyman K, Viel S. Algebraic voting theory & representations of Sm≀Sn. Advances in Applied Mathematics. 2020 Sep 1;120.
Barcelo, H., et al. “Algebraic voting theory & representations of Sm≀Sn.” Advances in Applied Mathematics, vol. 120, Sept. 2020. Scopus, doi:10.1016/j.aam.2020.102077.
Barcelo H, Bernstein M, Bockting-Conrad S, McNicholas E, Nyman K, Viel S. Algebraic voting theory & representations of Sm≀Sn. Advances in Applied Mathematics. 2020 Sep 1;120.
Published In
Advances in Applied Mathematics
DOI
EISSN
1090-2074
ISSN
0196-8858
Publication Date
September 1, 2020
Volume
120
Related Subject Headings
- Applied Mathematics
- 4904 Pure mathematics
- 4901 Applied mathematics
- 0102 Applied Mathematics
- 0101 Pure Mathematics