Skip to main content

Classification of Multiple Diseases on Body CT Scans Using Weakly Supervised Deep Learning.

Publication ,  Journal Article
Tushar, FI; D'Anniballe, VM; Hou, R; Mazurowski, MA; Fu, W; Samei, E; Rubin, GD; Lo, JY
Published in: Radiol Artif Intell
January 2022

PURPOSE: To design multidisease classifiers for body CT scans for three different organ systems using automatically extracted labels from radiology text reports. MATERIALS AND METHODS: This retrospective study included a total of 12 092 patients (mean age, 57 years ± 18 [standard deviation]; 6172 women) for model development and testing. Rule-based algorithms were used to extract 19 225 disease labels from 13 667 body CT scans performed between 2012 and 2017. Using a three-dimensional DenseVNet, three organ systems were segmented: lungs and pleura, liver and gallbladder, and kidneys and ureters. For each organ system, a three-dimensional convolutional neural network classified each as no apparent disease or for the presence of four common diseases, for a total of 15 different labels across all three models. Testing was performed on a subset of 2158 CT volumes relative to 2875 manually derived reference labels from 2133 patients (mean age, 58 years ± 18; 1079 women). Performance was reported as area under the receiver operating characteristic curve (AUC), with 95% CIs calculated using the DeLong method. RESULTS: Manual validation of the extracted labels confirmed 91%-99% accuracy across the 15 different labels. AUCs for lungs and pleura labels were as follows: atelectasis, 0.77 (95% CI: 0.74, 0.81); nodule, 0.65 (95% CI: 0.61, 0.69); emphysema, 0.89 (95% CI: 0.86, 0.92); effusion, 0.97 (95% CI: 0.96, 0.98); and no apparent disease, 0.89 (95% CI: 0.87, 0.91). AUCs for liver and gallbladder were as follows: hepatobiliary calcification, 0.62 (95% CI: 0.56, 0.67); lesion, 0.73 (95% CI: 0.69, 0.77); dilation, 0.87 (95% CI: 0.84, 0.90); fatty, 0.89 (95% CI: 0.86, 0.92); and no apparent disease, 0.82 (95% CI: 0.78, 0.85). AUCs for kidneys and ureters were as follows: stone, 0.83 (95% CI: 0.79, 0.87); atrophy, 0.92 (95% CI: 0.89, 0.94); lesion, 0.68 (95% CI: 0.64, 0.72); cyst, 0.70 (95% CI: 0.66, 0.73); and no apparent disease, 0.79 (95% CI: 0.75, 0.83). CONCLUSION: Weakly supervised deep learning models were able to classify diverse diseases in multiple organ systems from CT scans.Keywords: CT, Diagnosis/Classification/Application Domain, Semisupervised Learning, Whole-Body Imaging© RSNA, 2022.

Duke Scholars

Published In

Radiol Artif Intell

DOI

EISSN

2638-6100

Publication Date

January 2022

Volume

4

Issue

1

Start / End Page

e210026

Location

United States
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Tushar, F. I., D’Anniballe, V. M., Hou, R., Mazurowski, M. A., Fu, W., Samei, E., … Lo, J. Y. (2022). Classification of Multiple Diseases on Body CT Scans Using Weakly Supervised Deep Learning. Radiol Artif Intell, 4(1), e210026. https://doi.org/10.1148/ryai.210026

Published In

Radiol Artif Intell

DOI

EISSN

2638-6100

Publication Date

January 2022

Volume

4

Issue

1

Start / End Page

e210026

Location

United States