Tunable unidirectional compact acoustic amplifier via space-time modulated membranes
Space-time modulation has recently attracted considerable attention as it enables new possibilities in wave manipulation and control. Here we propose a tunable unidirectional acoustic amplifier based on a space-time modulated membrane system. The transfer matrix method is applied to design this system and optimize the modulation parameters for the realization of unidirectional amplification. Efficient one-way amplification of acoustic waves is demonstrated theoretically and numerically within a frequency range from 2260 to 2520 Hz, with overall dimension being less than 1/3 of the corresponding wavelength. Across this operation band, the amplification factor in the positive direction varies smoothly from 3.0 to 5.8, while the transmitted wave energy in the negative direction does not change significantly. Our work identifies a feasible approach to realize a tunable unidirectional acoustic amplifier via space-time modulated membranes, which offers a design platform for a number of applications in sensing, imaging, and communication.
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Related Subject Headings
- 51 Physical sciences
- 40 Engineering
- 34 Chemical sciences
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Related Subject Headings
- 51 Physical sciences
- 40 Engineering
- 34 Chemical sciences