Skip to main content
Journal cover image

Comparison of magnetization transfer-preparation and T2-preparation for dark-blood delayed-enhancement imaging.

Publication ,  Journal Article
Jenista, ER; Wendell, DC; Kim, HW; Rehwald, WG; Chen, E-L; Darty, SN; Smith, LR; Azevedo, CF; Parker, MA; Kim, RJ
Published in: NMR Biomed
November 2020

Recently developed dark-blood techniques such as Flow-Independent Dark-blood DeLayed Enhancement (FIDDLE) allow simultaneous visualization of tissue contrast-enhancement and blood-pool suppression. Critical to FIDDLE is the magnetization preparation, which accentuates differences between myocardium and blood-pool. Here, we compared magnetization transfer (MT)-preparation and T2-preparation for use with FIDDLE. Variants of FIDDLE were developed with MT- or T2-preparation modules and tested in 35 patients (11 at 1.5 T, 24 at 3 T). Images were acquired with each FIDDLE variant in an interleaved fashion 10 minutes after gadolinium administration with otherwise identical acquisition parameters. Images were visually and quantitatively assessed for artifacts and differences in right ventricle to left ventricle (RV-to-LV) blood-pool suppression. Bright artifacts, reflecting incomplete blood-pool suppression, were frequently observed in the left atrium with T2-preparation FIDDLE at 1.5 and 3 T (82% and up to 100% of patients, respectively). MT-preparation FIDDLE resulted in fewer patients with artifacts (0% at 1.5 T, 22% at 3 T; P < .01). Left atrial blood-pool signal was significantly more homogeneous with MT-preparation than with T2-preparation at 1.5 and 3 T (P < .001 for all comparisons). Visibly different RV-to-LV blood-pool suppression was observed with T2-preparation in 36% of patients at 1.5 T and up to 94% at 3 T. In these patients, RV blood-pool signal was elevated, reducing the conspicuity of the myocardial-RV blood-pool border. Conversely, there were no visible differences in RV-to-LV blood-pool suppression with MT-preparation. Quantitative assessment of differences in blood-pool suppression and blood-pool artifacts was consistent with visual analyses. We conclude that for dark blood-blood delayed-enhancement imaging of the heart, MT-preparation results in fewer bright blood-pool artifacts and more uniform blood-pool suppression than T2-preparation.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

NMR Biomed

DOI

EISSN

1099-1492

Publication Date

November 2020

Volume

33

Issue

11

Start / End Page

e4396

Location

England

Related Subject Headings

  • Signal-To-Noise Ratio
  • Signal Processing, Computer-Assisted
  • Nuclear Medicine & Medical Imaging
  • Magnetic Resonance Imaging
  • Humans
  • Heart Ventricles
  • Blood
  • Artifacts
  • Adult
  • 4003 Biomedical engineering
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Jenista, E. R., Wendell, D. C., Kim, H. W., Rehwald, W. G., Chen, E.-L., Darty, S. N., … Kim, R. J. (2020). Comparison of magnetization transfer-preparation and T2-preparation for dark-blood delayed-enhancement imaging. NMR Biomed, 33(11), e4396. https://doi.org/10.1002/nbm.4396
Jenista, Elizabeth R., David C. Wendell, Han W. Kim, Wolfgang G. Rehwald, Enn-Ling Chen, Stephen N. Darty, Logan R. Smith, Clerio F. Azevedo, Michele A. Parker, and Raymond J. Kim. “Comparison of magnetization transfer-preparation and T2-preparation for dark-blood delayed-enhancement imaging.NMR Biomed 33, no. 11 (November 2020): e4396. https://doi.org/10.1002/nbm.4396.
Jenista ER, Wendell DC, Kim HW, Rehwald WG, Chen E-L, Darty SN, et al. Comparison of magnetization transfer-preparation and T2-preparation for dark-blood delayed-enhancement imaging. NMR Biomed. 2020 Nov;33(11):e4396.
Jenista, Elizabeth R., et al. “Comparison of magnetization transfer-preparation and T2-preparation for dark-blood delayed-enhancement imaging.NMR Biomed, vol. 33, no. 11, Nov. 2020, p. e4396. Pubmed, doi:10.1002/nbm.4396.
Jenista ER, Wendell DC, Kim HW, Rehwald WG, Chen E-L, Darty SN, Smith LR, Azevedo CF, Parker MA, Kim RJ. Comparison of magnetization transfer-preparation and T2-preparation for dark-blood delayed-enhancement imaging. NMR Biomed. 2020 Nov;33(11):e4396.
Journal cover image

Published In

NMR Biomed

DOI

EISSN

1099-1492

Publication Date

November 2020

Volume

33

Issue

11

Start / End Page

e4396

Location

England

Related Subject Headings

  • Signal-To-Noise Ratio
  • Signal Processing, Computer-Assisted
  • Nuclear Medicine & Medical Imaging
  • Magnetic Resonance Imaging
  • Humans
  • Heart Ventricles
  • Blood
  • Artifacts
  • Adult
  • 4003 Biomedical engineering