Skip to main content

Random Coordinate Langevin Monte Carlo

Publication ,  Journal Article
Ding, Z; Li, Q; Lu, J; Wright, SJ
October 3, 2020

Langevin Monte Carlo (LMC) is a popular Markov chain Monte Carlo sampling method. One drawback is that it requires the computation of the full gradient at each iteration, an expensive operation if the dimension of the problem is high. We propose a new sampling method: Random Coordinate LMC (RC-LMC). At each iteration, a single coordinate is randomly selected to be updated by a multiple of the partial derivative along this direction plus noise, and all other coordinates remain untouched. We investigate the total complexity of RC-LMC and compare it with the classical LMC for log-concave probability distributions. When the gradient of the log-density is Lipschitz, RC-LMC is less expensive than the classical LMC if the log-density is highly skewed for high dimensional problems, and when both the gradient and the Hessian of the log-density are Lipschitz, RC-LMC is always cheaper than the classical LMC, by a factor proportional to the square root of the problem dimension. In the latter case, our estimate of complexity is sharp with respect to the dimension.

Duke Scholars

Publication Date

October 3, 2020
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Ding, Z., Li, Q., Lu, J., & Wright, S. J. (2020). Random Coordinate Langevin Monte Carlo.
Ding, Zhiyan, Qin Li, Jianfeng Lu, and Stephen J. Wright. “Random Coordinate Langevin Monte Carlo,” October 3, 2020.
Ding Z, Li Q, Lu J, Wright SJ. Random Coordinate Langevin Monte Carlo. 2020 Oct 3;
Ding, Zhiyan, et al. Random Coordinate Langevin Monte Carlo. Oct. 2020.
Ding Z, Li Q, Lu J, Wright SJ. Random Coordinate Langevin Monte Carlo. 2020 Oct 3;

Publication Date

October 3, 2020