Liver synthetic CT generation based on dense-cyclegan for MRI-only treatment planning
The application of MRI significantly improves the accuracy and reliability of target delineation for many disease sites in radiotherapy due to its superior soft tissue contrast as compared to CT. However, MRI data do not contain the electron density information that is necessary for accurate dose calculation. There has been limited work in abdominal synthetic CT (sCT) generation. In this work, we propose to integrate dense blocks and a novel compound loss function into a 3D cycleGAN-based framework to generate sCT from MR images. Since MRI and CT are two different image modalities, dense blocks are employed to combine low- and high-frequency information that can effectively represent different image patches. A novel compound loss function with l