
The orbital hoods of snapping shrimp have surface features that may represent tradeoffs between vision and protection.
Snapping shrimp (Alpheidae) are decapod crustaceans named for the snapping claws with which they produce cavitation bubbles. Snapping shrimp use the shock waves released by collapsing cavitation bubbles as weapons. Along with their distinctive claws, snapping shrimp have orbital hoods, extensions of their carapace that cover their heads and eyes. Snapping shrimp view the world through their orbital hoods, so we asked if the surfaces of the orbital hoods of the snapping shrimp Alpheus heterochaelis have features that minimize the scattering of light. Using SEM, we found that surface features, primarily microbial epibionts, covered less space on the surfaces of the orbital hoods of A. heterochaelis (∼18%) than they do elsewhere on the carapace (∼50%). Next, we asked if these surface features influence aerophobicity. By measuring the contact angles of air bubbles, we found the orbital hoods of A. heterochaelis are less aerophobic than other regions of the carapace. Surfaces that are less aerophobic are more likely to have cavitation bubbles adhere to them and are more likely to have shock waves cause new cavitation bubbles to nucleate upon them. Computational modeling indicates the orbital hoods of A. heterochaelis face a functional trade-off: fewer surface features, such as less extensive communities of microbial epibionts, may minimize the scattering of light at the cost of making the adhesion and nucleation of cavitation bubbles more likely.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Start / End Page
Related Subject Headings
- Vision, Ocular
- Entomology
- Decapoda
- Animals
- Animal Shells
- 3109 Zoology
- 0608 Zoology
Citation

Published In
DOI
EISSN
ISSN
Publication Date
Volume
Start / End Page
Related Subject Headings
- Vision, Ocular
- Entomology
- Decapoda
- Animals
- Animal Shells
- 3109 Zoology
- 0608 Zoology