Skip to main content

The minimally invasive interbody selection algorithm for spinal deformity.

Publication ,  Journal Article
Mummaneni, PV; Hussain, I; Shaffrey, CI; Eastlack, RK; Mundis, GM; Uribe, JS; Fessler, RG; Park, P; Robinson, L; Rivera, J; Chou, D; Wang, MY ...
Published in: J Neurosurg Spine
May 1, 2021

OBJECTIVE: Minimally invasive surgery (MIS) for spinal deformity uses interbody techniques for correction, indirect decompression, and arthrodesis. Selection criteria for choosing a particular interbody approach are lacking. The authors created the minimally invasive interbody selection algorithm (MIISA) to provide a framework for rational decision-making in MIS for deformity. METHODS: A retrospective data set of circumferential MIS (cMIS) for adult spinal deformity (ASD) collected over a 5-year period was analyzed by level in the lumbar spine to identify surgeon preferences and evaluate segmental lordosis outcomes. These data were used to inform a Delphi session of minimally invasive deformity surgeons from which the algorithm was created. The algorithm leads to 1 of 4 interbody approaches: anterior lumbar interbody fusion (ALIF), anterior column release (ACR), lateral lumbar interbody fusion (LLIF), and transforaminal lumbar interbody fusion (TLIF). Preoperative and 2-year postoperative radiographic parameters and clinical outcomes were compared. RESULTS: Eleven surgeons completed 100 cMISs for ASD with 338 interbody devices, with a minimum 2-year follow-up. The type of interbody approach used at each level from L1 to S1 was recorded. The MIISA was then created with substantial agreement. The surgeons generally preferred LLIF for L1-2 (91.7%), L2-3 (85.2%), and L3-4 (80.7%). ACR was most commonly performed at L3-4 (8.4%) and L2-3 (6.2%). At L4-5, LLIF (69.5%), TLIF (15.9%), and ALIF (9.8%) were most commonly utilized. TLIF and ALIF were the most selected approaches at L5-S1 (61.4% and 38.6%, respectively). Segmental lordosis at each level varied based on the approach, with greater increases reported using ALIF, especially at L4-5 (9.2°) and L5-S1 (5.3°). A substantial increase in lordosis was achieved with ACR at L2-3 (10.9°) and L3-4 (10.4°). Lateral interbody arthrodesis without the use of an ACR did not generally result in significant lordosis restoration. There were statistically significant improvements in lumbar lordosis (LL), pelvic incidence-LL mismatch, coronal Cobb angle, and Oswestry Disability Index at the 2-year follow-up. CONCLUSIONS: The use of the MIISA provides consistent guidance for surgeons who plan to perform MIS for deformity. For L1-4, the surgeons preferred lateral approaches to TLIF and reserved ACR for patients who needed the greatest increase in segmental lordosis. For L4-5, the surgeons' order of preference was LLIF, TLIF, and ALIF, but TLIF failed to demonstrate any significant lordosis restoration. At L5-S1, the surgical team typically preferred an ALIF when segmental lordosis was desired and preferred a TLIF if preoperative segmental lordosis was adequate.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

J Neurosurg Spine

DOI

EISSN

1547-5646

Publication Date

May 1, 2021

Volume

34

Issue

5

Start / End Page

741 / 748

Location

United States

Related Subject Headings

  • Orthopedics
  • 3209 Neurosciences
  • 1109 Neurosciences
  • 1103 Clinical Sciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Mummaneni, P. V., Hussain, I., Shaffrey, C. I., Eastlack, R. K., Mundis, G. M., Uribe, J. S., … International Spine Study Group. (2021). The minimally invasive interbody selection algorithm for spinal deformity. J Neurosurg Spine, 34(5), 741–748. https://doi.org/10.3171/2020.9.SPINE20230
Mummaneni, Praveen V., Ibrahim Hussain, Christopher I. Shaffrey, Robert K. Eastlack, Gregory M. Mundis, Juan S. Uribe, Richard G. Fessler, et al. “The minimally invasive interbody selection algorithm for spinal deformity.J Neurosurg Spine 34, no. 5 (May 1, 2021): 741–48. https://doi.org/10.3171/2020.9.SPINE20230.
Mummaneni PV, Hussain I, Shaffrey CI, Eastlack RK, Mundis GM, Uribe JS, et al. The minimally invasive interbody selection algorithm for spinal deformity. J Neurosurg Spine. 2021 May 1;34(5):741–8.
Mummaneni, Praveen V., et al. “The minimally invasive interbody selection algorithm for spinal deformity.J Neurosurg Spine, vol. 34, no. 5, May 2021, pp. 741–48. Pubmed, doi:10.3171/2020.9.SPINE20230.
Mummaneni PV, Hussain I, Shaffrey CI, Eastlack RK, Mundis GM, Uribe JS, Fessler RG, Park P, Robinson L, Rivera J, Chou D, Kanter AS, Okonkwo DO, Nunley PD, Wang MY, Marca FL, Than KD, Fu K-M, International Spine Study Group. The minimally invasive interbody selection algorithm for spinal deformity. J Neurosurg Spine. 2021 May 1;34(5):741–748.

Published In

J Neurosurg Spine

DOI

EISSN

1547-5646

Publication Date

May 1, 2021

Volume

34

Issue

5

Start / End Page

741 / 748

Location

United States

Related Subject Headings

  • Orthopedics
  • 3209 Neurosciences
  • 1109 Neurosciences
  • 1103 Clinical Sciences