Concentration-Independent Multivalent Targeting of Cancer Cells by Genetically Encoded Core-Crosslinked Elastin/Resilin-like Polypeptide Micelles.
Valency is a fundamental principle to control macromolecular interactions and is used to target specific cell types by multivalent ligand-receptor interactions using self-assembled nanoparticle carriers. At the concentrations encountered in solid tumors upon systemic administration, these nanoparticles are, however, likely to show critical micelle concentration (CMC)-dependent disassembly and thus loss of function. To overcome this limitation, core-crosslinkable micelles of genetically encoded resilin-/elastin-like diblock polypeptides were recombinantly synthesized. The amphiphilic constructs were covalently photo-crosslinked through the genetically encoded unnatural amino acid para-azidophenylalanine in their hydrophobic block and they carried different anticancer ligands on their hydrophilic block: the wild-type tenth human fibronectin type III domain, a GRGDSPAS peptide-both targeting αvβ3 integrin-and an engineered variant of the third fibronectin type III domain of tenascin C that is a death receptor 5 agonist. Although uncrosslinked micelles lost most of their targeting ability below their CMC, the crosslinked analogues remained active at concentrations up to 1000-fold lower than the CMC, with binding affinities that are comparable to antibodies.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Polymers
- Peptides
- Neoplasms
- Micelles
- Insect Proteins
- Humans
- Elastin
- 40 Engineering
- 34 Chemical sciences
- 31 Biological sciences
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Polymers
- Peptides
- Neoplasms
- Micelles
- Insect Proteins
- Humans
- Elastin
- 40 Engineering
- 34 Chemical sciences
- 31 Biological sciences