Skip to main content

Deep learning approach for automated detection of retinal pathology from ultra-widefield retinal images

Publication ,  Conference
Hu, M; Amason, J; Lee, T; Gao, Q; Borkar, D; Pajic, M; Hadziahmetovic, M
Published in: INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE
2021

Duke Scholars

Published In

INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE

EISSN

1552-5783

ISSN

0146-0404

Publication Date

2021

Volume

62

Issue

8

Related Subject Headings

  • Ophthalmology & Optometry
  • 3212 Ophthalmology and optometry
  • 11 Medical and Health Sciences
  • 06 Biological Sciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Hu, M., Amason, J., Lee, T., Gao, Q., Borkar, D., Pajic, M., & Hadziahmetovic, M. (2021). Deep learning approach for automated detection of retinal pathology from ultra-widefield retinal images. In INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE (Vol. 62).
Hu, Mingzhe, Joshua Amason, Terry Lee, Qitong Gao, Durga Borkar, Miroslav Pajic, and Majda Hadziahmetovic. “Deep learning approach for automated detection of retinal pathology from ultra-widefield retinal images.” In INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, Vol. 62, 2021.
Hu M, Amason J, Lee T, Gao Q, Borkar D, Pajic M, et al. Deep learning approach for automated detection of retinal pathology from ultra-widefield retinal images. In: INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE. 2021.
Hu, Mingzhe, et al. “Deep learning approach for automated detection of retinal pathology from ultra-widefield retinal images.” INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, vol. 62, no. 8, 2021.
Hu M, Amason J, Lee T, Gao Q, Borkar D, Pajic M, Hadziahmetovic M. Deep learning approach for automated detection of retinal pathology from ultra-widefield retinal images. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE. 2021.

Published In

INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE

EISSN

1552-5783

ISSN

0146-0404

Publication Date

2021

Volume

62

Issue

8

Related Subject Headings

  • Ophthalmology & Optometry
  • 3212 Ophthalmology and optometry
  • 11 Medical and Health Sciences
  • 06 Biological Sciences