Existence and Computation of Generalized Wannier Functions for Non-Periodic Systems in Two Dimensions and Higher
Exponentially-localized Wannier functions (ELWFs) are an orthonormal basis of the Fermi projection of a material consisting of functions which decay exponentially fast away from their maxima. When the material is insulating and crystalline, conditions which guarantee existence of ELWFs in dimensions one, two, and three are well-known, and methods for constructing ELWFs numerically are well-developed. We consider the case where the material is insulating but not necessarily crystalline, where much less is known. In one spatial dimension, Kivelson and Nenciu-Nenciu have proved ELWFs can be constructed as the eigenfunctions of a self-adjoint operator acting on the Fermi projection. In this work, we identify an assumption under which we can generalize the Kivelson–Nenciu–Nenciu result to two dimensions and higher. Under this assumption, we prove that ELWFs can be constructed as the eigenfunctions of a sequence of self-adjoint operators acting on the Fermi projection.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- General Physics
- 4904 Pure mathematics
- 4901 Applied mathematics
- 0102 Applied Mathematics
- 0101 Pure Mathematics
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- General Physics
- 4904 Pure mathematics
- 4901 Applied mathematics
- 0102 Applied Mathematics
- 0101 Pure Mathematics