Patient-derived micro-organospheres enable clinical precision oncology.
Patient-derived xenografts (PDXs) and patient-derived organoids (PDOs) have been shown to model clinical response to cancer therapy. However, it remains challenging to use these models to guide timely clinical decisions for cancer patients. Here, we used droplet emulsion microfluidics with temperature control and dead-volume minimization to rapidly generate thousands of micro-organospheres (MOSs) from low-volume patient tissues, which serve as an ideal patient-derived model for clinical precision oncology. A clinical study of recently diagnosed metastatic colorectal cancer (CRC) patients using an MOS-based precision oncology pipeline reliably assessed tumor drug response within 14 days, a timeline suitable for guiding treatment decisions in the clinic. Furthermore, MOSs capture original stromal cells and allow T cell penetration, providing a clinical assay for testing immuno-oncology (IO) therapies such as PD-1 blockade, bispecific antibodies, and T cell therapies on patient tumors.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- Precision Medicine
- Organoids
- Immunotherapy
- Humans
- Developmental Biology
- Colonic Neoplasms
- 32 Biomedical and clinical sciences
- 31 Biological sciences
- 11 Medical and Health Sciences
- 06 Biological Sciences
Citation
Published In
DOI
EISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- Precision Medicine
- Organoids
- Immunotherapy
- Humans
- Developmental Biology
- Colonic Neoplasms
- 32 Biomedical and clinical sciences
- 31 Biological sciences
- 11 Medical and Health Sciences
- 06 Biological Sciences