Comparison of Inhaled Drug Delivery in Patients With One- and Two-level Laryngotracheal Stenosis.
OBJECTIVES/HYPOTHESIS: Laryngotracheal stenosis (LTS) is a functionally devastating condition with high respiratory morbidity and mortality. This preliminary study investigates airflow dynamics and stenotic drug delivery in patients with one- and two-level LTS. STUDY DESIGN: A Computational Modeling Restropective Cohort Study. METHODS: Computed tomography scans from seven LTS patients, five with one-level (three subglottic, two tracheal), and two with two-level (glottis + trachea, glottis + subglottis) were used to reconstruct patient-specific three-dimensional upper airway models. Airflow and orally inhaled drug particle transport were simulated using computational fluid dynamics modeling. Drug particle transport was simulated for 1-20 μm particles released into the mouth at velocities of 0 m/s, 1 m/s, 3 m/s, and 10 m/s for metered dose inhaler (MDI) and 0 m/s for dry powder inhaler (DPI) simulations. Airflow resistance and stenotic drug deposition in the patients' airway models were compared. RESULTS: Overall, there was increased airflow resistance at stenotic sites in subjects with two-level versus one-level stenosis (0.136 Pa s/ml vs. 0.069 Pa s/ml averages). Subjects with two-level stenosis had greater particle deposition at sites of stenosis compared to subjects with one-level stenosis (average deposition 2.31% vs. 0.96%). One-level stenosis subjects, as well as one two-level stenosis subject, had the greatest deposition using MDI with a spacer (0 m/s): 2.59% and 4.34%, respectively. The second two-level stenosis subject had the greatest deposition using DPI (3.45%). Maximum deposition across all stenotic subtypes except one-level tracheal stenosis was achieved with particle sizes of 6-10 μm. CONCLUSIONS: Our results suggest that patients with two-level LTS may experience a more constricted laryngotracheal airflow profile compared to patients with one-level LTS, which may enhance overall stenotic drug deposition. LEVEL OF EVIDENCE: NA Laryngoscope, 133:366-374, 2023.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- Tracheal Stenosis
- Tomography, X-Ray Computed
- Otorhinolaryngology
- Lung
- Laryngostenosis
- Humans
- Drug Delivery Systems
- Constriction, Pathologic
- Cohort Studies
- Administration, Inhalation
Citation
Published In
DOI
EISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- Tracheal Stenosis
- Tomography, X-Ray Computed
- Otorhinolaryngology
- Lung
- Laryngostenosis
- Humans
- Drug Delivery Systems
- Constriction, Pathologic
- Cohort Studies
- Administration, Inhalation