G protein-coupled receptor signaling: transducers and effectors.
G protein-coupled receptors (GPCRs) are of considerable interest due to their importance in a wide range of physiological functions and in a large number of Food and Drug Administration (FDA)-approved drugs as therapeutic entities. With continued study of their function and mechanism of action, there is a greater understanding of how effector molecules interact with a receptor to initiate downstream effector signaling. This review aims to explore the signaling pathways, dynamic structures, and physiological relevance in the cardiovascular system of the three most important GPCR signaling effectors: heterotrimeric G proteins, GPCR kinases (GRKs), and β-arrestins. We will first summarize their prominent roles in GPCR pharmacology before transitioning into less well-explored areas. As new technologies are developed and applied to studying GPCR structure and their downstream effectors, there is increasing appreciation for the elegance of the regulatory mechanisms that mediate intracellular signaling and function.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- beta-Arrestins
- Transducers
- Signal Transduction
- Receptors, G-Protein-Coupled
- Physiology
- Arrestins
- 1116 Medical Physiology
- 0606 Physiology
- 0601 Biochemistry and Cell Biology
Citation
Published In
DOI
EISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- beta-Arrestins
- Transducers
- Signal Transduction
- Receptors, G-Protein-Coupled
- Physiology
- Arrestins
- 1116 Medical Physiology
- 0606 Physiology
- 0601 Biochemistry and Cell Biology