Novel regulation of cardiac force-frequency relation by CREM (cAMP response element modulator).
The cAMP response element modulator (CREM) plays pivotal roles in the hypothalamic-pituitary-gonadal axis. CREM mRNA is robustly expressed in human myocardium, and identified isoforms may suppress cAMP response element-mediated transcription. However, little is known about the physiological importance of CREM in intact hearts remains unknown. We studied CREM-null mice and age-matched control littermates by in vivo pressure-volume loops to analyze basal and reserve cardiac function. Basal systolic and diastolic function, echocardiographic morphology, and myocardial histology were normal in CREM-null animals. However functional reserve with increasing heart rate was markedly depressed, with less contractile augmentation (+22+/-9% CREM-/- vs.+62+/-11% controls, P<0.05) and relaxation shortening (5+/-5% CREM-/- vs. -18+/-3% controls; P<0.05) at faster rates. In contrast, isoproterenol dose-responses were similar, suggesting normal beta-adrenergic receptor-coupled signaling. Gene expression of calcium handling proteins (SERCA, phospholamban) and stress-response genes (e.g., alpha-skeletal actin, beta-myosin heavy chain, natriuretic peptides) were similar between groups. However, total and serine-phosphorylated phospholamban protein declined -38 and -64% respectively, and protein phosphatase-1 (PP1) activity increased 44% without increased protein levels (all P<0.01) in CREM-/- vs. controls. These results demonstrate novel involvement of CREM in regulation of PP1 activity and of PLB, likely resulting in a potent frequency-dependent influence on cardiac function.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- Sarcoplasmic Reticulum Calcium-Transporting ATPases
- Repressor Proteins
- Protein Phosphatase 1
- Phosphorylation
- Phosphoprotein Phosphatases
- Mutation
- Mice
- Isoproterenol
- Hemodynamics
- Heart Rate
Citation
Published In
DOI
EISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- Sarcoplasmic Reticulum Calcium-Transporting ATPases
- Repressor Proteins
- Protein Phosphatase 1
- Phosphorylation
- Phosphoprotein Phosphatases
- Mutation
- Mice
- Isoproterenol
- Hemodynamics
- Heart Rate