Skip to main content

Radiomic Phenotypes Distinguish Atypical Teratoid/Rhabdoid Tumors from Medulloblastoma.

Publication ,  Journal Article
Zhang, M; Wong, SW; Lummus, S; Han, M; Radmanesh, A; Ahmadian, SS; Prolo, LM; Lai, H; Eghbal, A; Oztekin, O; Cheshier, SH; Fisher, PG; Ho, CY ...
Published in: AJNR Am J Neuroradiol
September 2021

BACKGROUND AND PURPOSE: Atypical teratoid/rhabdoid tumors and medulloblastomas have similar imaging and histologic features but distinctly different outcomes. We hypothesized that they could be distinguished by MR imaging-based radiomic phenotypes. MATERIALS AND METHODS: We retrospectively assembled T2-weighted and gadolinium-enhanced T1-weighted images of 48 posterior fossa atypical teratoid/rhabdoid tumors and 96 match-paired medulloblastomas from 7 institutions. Using a holdout test set, we measured the performance of 6 candidate classifier models using 6 imaging features derived by sparse regression of 900 T2WI and 900 T1WI Imaging Biomarker Standardization Initiative-based radiomics features. RESULTS: From the originally extracted 1800 total Imaging Biomarker Standardization Initiative-based features, sparse regression consistently reduced the feature set to 1 from T1WI and 5 from T2WI. Among classifier models, logistic regression performed with the highest AUC of 0.86, with sensitivity, specificity, accuracy, and F1 scores of 0.80, 0.82, 0.81, and 0.85, respectively. The top 3 important Imaging Biomarker Standardization Initiative features, by decreasing order of relative contribution, included voxel intensity at the 90th percentile, inverse difference moment normalized, and kurtosis-all from T2WI. CONCLUSIONS: Six quantitative signatures of image intensity, texture, and morphology distinguish atypical teratoid/rhabdoid tumors from medulloblastomas with high prediction performance across different machine learning strategies. Use of this technique for preoperative diagnosis of atypical teratoid/rhabdoid tumors could significantly inform therapeutic strategies and patient care discussions.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

AJNR Am J Neuroradiol

DOI

EISSN

1936-959X

Publication Date

September 2021

Volume

42

Issue

9

Start / End Page

1702 / 1708

Location

United States

Related Subject Headings

  • Rhabdoid Tumor
  • Retrospective Studies
  • Phenotype
  • Nuclear Medicine & Medical Imaging
  • Medulloblastoma
  • Magnetic Resonance Imaging
  • Humans
  • Cerebellar Neoplasms
  • 3406 Physical chemistry
  • 3209 Neurosciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Zhang, M., Wong, S. W., Lummus, S., Han, M., Radmanesh, A., Ahmadian, S. S., … Yeom, K. W. (2021). Radiomic Phenotypes Distinguish Atypical Teratoid/Rhabdoid Tumors from Medulloblastoma. AJNR Am J Neuroradiol, 42(9), 1702–1708. https://doi.org/10.3174/ajnr.A7200
Zhang, M., S. W. Wong, S. Lummus, M. Han, A. Radmanesh, S. S. Ahmadian, L. M. Prolo, et al. “Radiomic Phenotypes Distinguish Atypical Teratoid/Rhabdoid Tumors from Medulloblastoma.AJNR Am J Neuroradiol 42, no. 9 (September 2021): 1702–8. https://doi.org/10.3174/ajnr.A7200.
Zhang M, Wong SW, Lummus S, Han M, Radmanesh A, Ahmadian SS, et al. Radiomic Phenotypes Distinguish Atypical Teratoid/Rhabdoid Tumors from Medulloblastoma. AJNR Am J Neuroradiol. 2021 Sep;42(9):1702–8.
Zhang, M., et al. “Radiomic Phenotypes Distinguish Atypical Teratoid/Rhabdoid Tumors from Medulloblastoma.AJNR Am J Neuroradiol, vol. 42, no. 9, Sept. 2021, pp. 1702–08. Pubmed, doi:10.3174/ajnr.A7200.
Zhang M, Wong SW, Lummus S, Han M, Radmanesh A, Ahmadian SS, Prolo LM, Lai H, Eghbal A, Oztekin O, Cheshier SH, Fisher PG, Ho CY, Vogel H, Vitanza NA, Lober RM, Grant GA, Jaju A, Yeom KW. Radiomic Phenotypes Distinguish Atypical Teratoid/Rhabdoid Tumors from Medulloblastoma. AJNR Am J Neuroradiol. 2021 Sep;42(9):1702–1708.

Published In

AJNR Am J Neuroradiol

DOI

EISSN

1936-959X

Publication Date

September 2021

Volume

42

Issue

9

Start / End Page

1702 / 1708

Location

United States

Related Subject Headings

  • Rhabdoid Tumor
  • Retrospective Studies
  • Phenotype
  • Nuclear Medicine & Medical Imaging
  • Medulloblastoma
  • Magnetic Resonance Imaging
  • Humans
  • Cerebellar Neoplasms
  • 3406 Physical chemistry
  • 3209 Neurosciences