Skip to main content

Conformable hierarchically engineered polymeric micromeshes enabling combinatorial therapies in brain tumours.

Publication ,  Journal Article
Di Mascolo, D; Palange, AL; Primavera, R; Macchi, F; Catelani, T; Piccardi, F; Spanò, R; Ferreira, M; Marotta, R; Armirotti, A; Gallotti, AL ...
Published in: Nat Nanotechnol
July 2021

The poor transport of molecular and nanoscale agents through the blood-brain barrier together with tumour heterogeneity contribute to the dismal prognosis in patients with glioblastoma multiforme. Here, a biodegradable implant (μMESH) is engineered in the form of a micrometre-sized poly(lactic-co-glycolic acid) mesh laid over a water-soluble poly(vinyl alcohol) layer. Upon poly(vinyl alcohol) dissolution, the flexible poly(lactic-co-glycolic acid) mesh conforms to the resected tumour cavity as docetaxel-loaded nanomedicines and diclofenac molecules are continuously and directly released into the adjacent tumour bed. In orthotopic brain cancer models, generated with a conventional, reference cell line and patient-derived cells, a single μMESH application, carrying 0.75 mg kg-1 of docetaxel and diclofenac, abrogates disease recurrence up to eight months after tumour resection, with no appreciable adverse effects. Without tumour resection, the μMESH increases the median overall survival (∼30 d) as compared with the one-time intracranial deposition of docetaxel-loaded nanomedicines (15 d) or 10 cycles of systemically administered temozolomide (12 d). The μMESH modular structure, for the independent coloading of different molecules and nanomedicines, together with its mechanical flexibility, can be exploited to treat a variety of cancers, realizing patient-specific dosing and interventions.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Nat Nanotechnol

DOI

EISSN

1748-3395

Publication Date

July 2021

Volume

16

Issue

7

Start / End Page

820 / 829

Location

England

Related Subject Headings

  • Xenograft Model Antitumor Assays
  • Polylactic Acid-Polyglycolic Acid Copolymer
  • Nanoscience & Nanotechnology
  • Mice, Nude
  • Mice
  • Humans
  • Female
  • Drug Implants
  • Docetaxel
  • Diclofenac
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Di Mascolo, D., Palange, A. L., Primavera, R., Macchi, F., Catelani, T., Piccardi, F., … Decuzzi, P. (2021). Conformable hierarchically engineered polymeric micromeshes enabling combinatorial therapies in brain tumours. Nat Nanotechnol, 16(7), 820–829. https://doi.org/10.1038/s41565-021-00879-3
Di Mascolo, Daniele, Anna Lisa Palange, Rosita Primavera, Francesca Macchi, Tiziano Catelani, Federica Piccardi, Raffaele Spanò, et al. “Conformable hierarchically engineered polymeric micromeshes enabling combinatorial therapies in brain tumours.Nat Nanotechnol 16, no. 7 (July 2021): 820–29. https://doi.org/10.1038/s41565-021-00879-3.
Di Mascolo D, Palange AL, Primavera R, Macchi F, Catelani T, Piccardi F, et al. Conformable hierarchically engineered polymeric micromeshes enabling combinatorial therapies in brain tumours. Nat Nanotechnol. 2021 Jul;16(7):820–9.
Di Mascolo, Daniele, et al. “Conformable hierarchically engineered polymeric micromeshes enabling combinatorial therapies in brain tumours.Nat Nanotechnol, vol. 16, no. 7, July 2021, pp. 820–29. Pubmed, doi:10.1038/s41565-021-00879-3.
Di Mascolo D, Palange AL, Primavera R, Macchi F, Catelani T, Piccardi F, Spanò R, Ferreira M, Marotta R, Armirotti A, Gallotti AL, Galli R, Wilson C, Grant GA, Decuzzi P. Conformable hierarchically engineered polymeric micromeshes enabling combinatorial therapies in brain tumours. Nat Nanotechnol. 2021 Jul;16(7):820–829.

Published In

Nat Nanotechnol

DOI

EISSN

1748-3395

Publication Date

July 2021

Volume

16

Issue

7

Start / End Page

820 / 829

Location

England

Related Subject Headings

  • Xenograft Model Antitumor Assays
  • Polylactic Acid-Polyglycolic Acid Copolymer
  • Nanoscience & Nanotechnology
  • Mice, Nude
  • Mice
  • Humans
  • Female
  • Drug Implants
  • Docetaxel
  • Diclofenac