Robot-guided pediatric stereoelectroencephalography: single-institution experience.
OBJECTIVEStereoelectroencephalography (SEEG) has increased in popularity for localization of epileptogenic zones in drug-resistant epilepsy because safety, accuracy, and efficacy have been well established in both adult and pediatric populations. Development of robot-guidance technology has greatly enhanced the efficiency of this procedure, without sacrificing safety or precision. To date there have been very limited reports of the use of this new technology in children. The authors present their initial experience using the ROSA platform for robot-guided SEEG in a pediatric population.METHODSBetween February 2016 and October 2017, 20 consecutive patients underwent robot-guided SEEG with the ROSA robotic guidance platform as part of ongoing seizure localization and workup for medically refractory epilepsy of several different etiologies. Medical and surgical history, imaging and trajectory plans, as well as operative records were analyzed retrospectively for surgical accuracy, efficiency, safety, and epilepsy outcomes.RESULTSA total of 222 leads were placed in 20 patients, with an average of 11.1 leads per patient. The mean total case time (± SD) was 297.95 (± 52.96) minutes and the mean operating time per lead was 10.98 minutes/lead, with improvements in total (33.36 minutes/lead vs 21.76 minutes/lead) and operative (13.84 minutes/lead vs 7.06 minutes/lead) case times/lead over the course of the study. The mean radial error was 1.75 (± 0.94 mm). Clinically useful data were obtained from SEEG in 95% of cases, and epilepsy surgery was indicated and performed in 95% of patients. In patients who underwent definitive epilepsy surgery with at least a 3-month follow-up, 50% achieved an Engel class I result (seizure freedom). There were no postoperative complications associated with SEEG placement and monitoring.CONCLUSIONSIn this study, the authors demonstrate that rapid adoption of robot-guided SEEG is possible even at a SEEG-naïve institution, with minimal learning curve. Use of robot guidance for SEEG can lead to significantly decreased operating times while maintaining safety, the overall goals of identification of epileptogenic zones, and improved epilepsy outcomes.
Duke Scholars
Published In
DOI
EISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- Stereotaxic Techniques
- Seizures
- Robotics
- Retrospective Studies
- Neurology & Neurosurgery
- Male
- Humans
- Female
- Epilepsy
- Electroencephalography
Citation
Published In
DOI
EISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- Stereotaxic Techniques
- Seizures
- Robotics
- Retrospective Studies
- Neurology & Neurosurgery
- Male
- Humans
- Female
- Epilepsy
- Electroencephalography