ZBTB7A promotes virus-host homeostasis during human coronavirus 229E infection.
The cellular fate after infection with human coronaviruses (HCoVs) is typically death. Previous data suggest, however, that the transcriptional state of an individual cell may sometimes allow additional outcomes of infection. Here, to probe the range of interactions a permissive cell type can have with a HCoV, we perform a CRISPR activation screen with HCoV-229E. The screen identified the transcription factor ZBTB7A, which strongly promotes cell survival after infection. Rather than suppressing viral infection, ZBTB7A upregulation allows the virus to induce a persistent infection and homeostatic state with the cell. We also find that control of oxidative stress is a primary driver of cellular survival during HCoV-229E infection. These data illustrate that, in addition to the nature of the infecting virus and the type of cell that it encounters, the cellular gene expression profile prior to infection can affect the eventual fate.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- Transcription Factors
- Humans
- Homeostasis
- DNA-Binding Proteins
- Coronavirus 229E, Human
- Cell Line, Tumor
- 31 Biological sciences
- 1116 Medical Physiology
- 0601 Biochemistry and Cell Biology
Citation
Published In
DOI
EISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- Transcription Factors
- Humans
- Homeostasis
- DNA-Binding Proteins
- Coronavirus 229E, Human
- Cell Line, Tumor
- 31 Biological sciences
- 1116 Medical Physiology
- 0601 Biochemistry and Cell Biology