Capturing the start point of the virus-cell interaction with high-speed 3D single-virus tracking.
The early stages of the virus-cell interaction have long evaded observation by existing microscopy methods due to the rapid diffusion of virions in the extracellular space and the large three-dimensional cellular structures involved. Here we present an active-feedback single-particle tracking method with simultaneous volumetric imaging of the live cell environment called 3D-TrIm to address this knowledge gap. 3D-TrIm captures the extracellular phase of the infectious cycle in what we believe is unprecedented detail. We report what are, to our knowledge, previously unobserved phenomena in the early stages of the virus-cell interaction, including skimming contact events at the millisecond timescale, orders of magnitude change in diffusion coefficient upon binding and cylindrical and linear diffusion modes along cellular protrusions. Finally, we demonstrate how this method can move single-particle tracking from simple monolayer culture toward more tissue-like conditions by tracking single virions in tightly packed epithelial cells. This multiresolution method presents opportunities for capturing fast, three-dimensional processes in biological systems.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Viruses
- Single Molecule Imaging
- Microscopy
- Imaging, Three-Dimensional
- Developmental Biology
- Cell Communication
- 31 Biological sciences
- 11 Medical and Health Sciences
- 10 Technology
- 06 Biological Sciences
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Viruses
- Single Molecule Imaging
- Microscopy
- Imaging, Three-Dimensional
- Developmental Biology
- Cell Communication
- 31 Biological sciences
- 11 Medical and Health Sciences
- 10 Technology
- 06 Biological Sciences